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A B S T R A C T

The growing photovoltaic generation results in a stochastic variability of the electric demand that could com-
promise the stability of the grid, increase the amount of energy reserve and the energy imbalance cost. On
regional scale, the estimation of the solar power generation from the real time environmental conditions and the
solar power forecast is essential for Distribution System Operators, Transmission System Operator, energy tra-
ders, and Aggregators.

In this context, a new upscaling method was developed and used for estimation and forecast of the photo-
voltaic distributed generation in a small area of Italy with high photovoltaic penetration. It was based on spatial
clustering of the PV fleet and neural networks models that input satellite or numerical weather prediction data
(centered on cluster centroids) to estimate or predict the regional solar generation. Two different approaches
were investigated. The simplest and more accurate approach requires a low computational effort and very few
input information should be provided by users. The power estimation model provided a RMSE of 3% of installed
capacity. Intra-day forecast (from 1 to 4 h) obtained a RMSE of 5%–7% and a skill score with respect to the smart
persistence from −8% to 33.6%. The one and two days ahead forecast achieved a RMSE of 7% and 7.5% and a
skill score of 39.2% and 45.7%. The smoothing effect on cluster scale was also studied. It reduces the RMSE of
power estimation of 33% and the RMSE of day-ahead forecast of 12% with respect to the mean single cluster
value.

Furthermore, a method to estimate the forecast error was also developed. It was based on an ensemble neural
network model coupled with a probabilistic correction. It can provide a highly reliable computation of the
prediction intervals.

1. Introduction

Large share of photovoltaic (PV) power brings new challenges for
the stability of the electrical grid, both at the local and national level,
since it introduces into the electric load a stochastic variability de-
pendent on meteorological conditions. Indeed, the electricity demand
(residual load) that should be fitted by not intermittent generation re-
sults from the difference between the electric consumption and the
distributed PV production.

Thus, in case of high PV generation higher secondary reserves and
ready supply are needed to ensure electrical balancing and overcome

the unpredictability and variability of the residual load. Moreover it
implies an increase in costs related to transactions on the day-ahead and
intra-day energy market and dispatching operations on the real-time
energy market.

To sustain the growing PV distributed production, the use of modern
power electronics, distributed control together with ancillary services
like PV generation forecast is becoming essential for many European
countries. Indeed, in Europe the PV penetration is now around 3% with
Italy leading at 7.9% and International Energy Agency (IEA) scenarios
predict for 2030 a PV generation of 10%–25% of the UE27 electric
demand (IEA, 2014a,b).
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On a regional scale, PV power estimation and forecast are relevant
for Distribution System Operators (DSO), Transmission System
Operator (TSO), energy traders, and Aggregators. In particular the es-
timation of regional PV power generation from the real time environ-
mental conditions is needed since in Italy the actual energy meters used
by DSO do not allow a real time power monitoring of the distributed
photovoltaic production. Thus, power estimation can be used for PV
power supervision, real time control of residual load and energy reserve
activation in case of deviation. PV power forecast can be employed by
users for transmission scheduling to reduce energy imbalance and re-
lated cost of penalties, residual load tracking, energy trading optimi-
zation, secondary energy reserve assessment.

An overview on benefit of PV power forecast in solving problems
related to the grid integration of intermittent solar energy production
can be found in Emmanuel and Rayudu (2017), Shivashankar et al.
(2016), Alet (2015), Alet et al. (2016), Zhang et al. (2015).

For power estimation and intra-day forecast the use of ground mea-
surements or satellite data is essential as for day-ahead forecasts Numerical
Weather Prediction (NWP) data should be employed to obtain an acceptable
accuracy level. The NWP data are generated by global or mesoscale simu-
lation models able to provide the numerical integration of the coupled
differential equations describing the dynamics of the atmosphere and ra-
diation transport mechanisms (Lorenz et al., 2016).

Moreover, these data are usually corrected by post-processing al-
gorithms (Model Output Statistics) that use past ground measurements
to partially remove systematic errors of NWP (Pierro et al., 2015;
Lorenz et al., 2009a,b).

Then PV power estimation or forecast can be achieved through de-
terministic i.e. (Pelland et al., 2011; Lorenz et al., 2011) or data-driven
models based on machine learning or probabilistic approaches i.e. (Zamo
et al., 2014a,b). For the deterministic models detailed information on the
PV plant set up (geographic position, modules technologies, etc.) are
needed. On the contrary for the data-driven models past power mea-
surements are essential for training, validation and test while none or very
few system information are required (Pierro et al., 2016a).

The starting point for Regional PV power estimation and forecast is
the so-called bottom-up strategy. It consists in the estimation or forecast
of all the distributed PV plants in the considered area. Nevertheless, it
requires a large computational and data handling effort. Indeed, models
should be implemented for each plant (even if the distance between two
plants is lower than the spatial resolution of the irradiance or NWP
data) and then the models should run for all the distributed systems.
Moreover, when there are not enough historical data to train machine
learning algorithms, a deterministic approach must be adopted.
Nevertheless, it often happens that some system information needed for
the model set up (such as orientation and tilt or module characteristic)
are unknown. For these reasons, ongoing research is focused on up-
scaling methods that allow the estimation and forecast of distributed
power of aggregates of PV plants through simplified approaches that
reduce the computational effort and require less information on the PV

fleet. For example, Fonseca et al. (2015) proposed four different up-
scaling method that can be used according to different plant informa-
tion and data availability scenarios. Zamo et al. (2014a) developed a
data-driven model for regional PV power forecast that only requires the
whole installed capacity and the historical PV generation in the con-
trolled area for model’s training.

Upscaling methods are mainly based on the selection of a subsets of
PV plants with a power output that can be considered representative of
the regional photovoltaic production. Then the forecast of the subsets
power output is rescaled taking into account the subsets capacity and
total capacity to obtain the regional prediction.

Several strategies have been developed in order to select the re-
presentative subsets. In Lorenz et al. (2008) two different random se-
lections were tested. In the first the spatial distribution of the selected
subsets should reflect the regional distribution while in the second just
a uniform distribution of selected systems was chosen. In Lorenz et al.
(2011, 2012) a subsets selection was proposed so that their distribution
with respect to the location, installed capacity and system character-
istics (plane orientation and technology) reflects the distribution of the
whole ensemble. In Fonseca et al. (2015) for the selection of re-
presentative subsets a stratified sampling method according to installed
capacity and PV system location was developed.

Another upscaling method considered the PV generation in the
controlled area as it was produced by a virtual PV plant. Then, the
power output of this virtual plant is directly forecast by machine
learning algorithms as reported in Zamo et al. (2014a).

Only recently, a hybrid upscaling strategy between the two above
mentioned approaches has been tested. Instead of sampling strategy,
clustering methods were used for spatial grouping of PV plants and then
the power output of each cluster is considered produced by a virtual PV
plant and directly predicted by deterministic or machine learning
models (Wolff et al., 2016).

Moreover, the accuracy of regional forecast is greatly improved with
respect to single site forecast due to the “ensemble smoothing effect”. This
effect is related to the forecasting errors correlation, the PV capacity dis-
tribution and the number of systems in the controlled area. The errors
correlation between sites decreases with the distance (or with the size of
the area) thus the regional forecast accuracy can be improved even by
50% with respect to the accuracy of single plant power prediction. For this
reason, the performance of each site forecast only slightly affects the
performance of regional prediction so that up-scaling methods can achieve
similar accuracy of the bottom-up approach.

The smoothing effect in irradiance and PV power forecasting of en-
semble of plants has been studied in Perez et al. (2011), Perez and Hoff
(2013), Hoff and Perez (2012), Lorenz et al. (2008, 2009b) and Fonseca
et al. (2014) while in Saint-Drenan et al. (2016) the smoothing effect was
analyzed related to the spatial interpolation of the power yield produced
by a random subsample of reference PV plants. The same smoothing ef-
fect can be observed in regional PV power estimation.

Another problem in the regional operative power estimation or

Nomenclature

Acronym Meaning
DSO Distribution System Operator
TSO Transmission System Operator
NWP Numerical Weather Prediction
WRF Weather Research and Forecasting model
MOS Model Output Statistic
ANNsE Ensemble of Artificial Neural Networks
GNN and 6GNN ANNsE models for power output

estimation based on irradiance inputs (G)
RHNN and PCARHNN ANNsE models for power

output day-ahead forecast based on

relative humidity inputs (RH)
PM and KPM simple and smart persistence models
Variables Meaning
GHI, GHIcs, RH and Tair global horizontal irradiance, clear sky

global horizontal irradiance, relative
humidity and air temperature at ground
level

PPKcs Pseudo clear sky performance index
PO PO PO PO, , ,obs PM KPM for PV power output observed and predicted

by the simple and smart persistence,
forecast models

P dd( )n daily plant capacity
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forecast is related to the data exchange between DSO or TSO and
forecast providers. Indeed these electrical system operators are re-
luctant in sharing real time power generation or ground irradiance data
(if available) thus machine learning algorithms that input past mea-
surements (autoregressive models, recurrent neural network, etc.) as
well as in general the use of time series (Kaur et al., 2016), cannot be
employed by forecast providers.

An overview on PV power forecast techniques can be found in
Paulescu et al. (2012), Kleissl (2013) and IEA (2013), while recent and
complete reviews can be found in Raza et al. (2016), Antonanzas et al.
(2016).

In this paper new upscaling methods for estimation and forecast are
developed. The methods consist of two steps. First a PV spatial clus-
tering was implemented and then models based on artificial neural
networks ensemble (ANNsE) were developed for the estimation and
day-ahead prediction of the regional power output with hours granu-
larity. Spatial clustering allows the determination of the centroids i.e.
the representative points in the controlled area on which the inputs or
outputs of the ANNsE models should be provided or predicted.

For the second step two different approaches were investigated. The
first estimates and forecasts the power output of each cluster and then
models output are averaged to obtain the regional prediction (models
output average). This can be considered as a bottom-up strategy on
cluster level. The second approach provides directly the regional power
prediction using inputs centered on each cluster centroid (model inputs
average). This approach is based on the spatial smoothing of the inputs
features. The performances of the two approaches were compared and
the smoothing effect at cluster scale was investigated.

Satellite derived irradiance from METEOSAT-9 and numerical
weather prediction from Weather Research and Forecasting model
(centered on each cluster centroids) are used as inputs for the estima-
tion and forecasting models. Furthermore, to provide the intra-day
forecast, an ANNsE that makes use of past power estimation and day-
ahead forecast was also set up.

The simplest upscaling strategy (model inputs average) requires

very few input information that should be provided by users. For the
training phase the total installed capacity, coordinates of each PV plants
and one year of distributed power generation are needed while for
operative forecast only the actual capacity is required. Moreover, it
does not imply any real time data exchange between users and provi-
ders and it does not need to be periodically trained. Thus, the proposed
method could be easily adopted by forecast providers to deliver the
regional PV power estimation and forecast to DSO, TSO for grid man-
agement and balancing issues.

Finally a parametric probabilistic method to compute highly reli-
able prediction intervals of the day-ahead forecast was also developed.
Thus, it can be effectively used by DSO, energy traders, and aggregator
companies to estimate the probability of a specific PV generation bid on
the energy market and by DSO and TSO to reduce the energy reserve
and ready supply.

The data-driven upscaling methods were trained and tested on the
real PV distributed generation of a small part of the South Tyrol region
in the North of Italy, characterized by a PV penetration similar to the
one achieved at national level.

The novelty of the upscaling methods was the use of a particular
chain of machine learning algorithms. K-mean clustering and principal
component analysis are adopted for features reduction while models
based on ensemble of artificial neural networks are used for power
estimation and day ahead power forecast. Then a new simple model for
intra-day forecast that makes use of past power estimation and day
ahead power prediction was presented. This study allows a complete
assessment of the forecast accuracy at different horizons, from 0 h
ahead (power estimation) to 72 h ahead.

Moreover, in literature, the ensemble smoothing effect was studied
comparing the forecast accuracy of a single plant with the accuracy of
the forecast of increasing ensembles of plants (Lorenz et al., 2008,
2009b; Fonseca et al., 2014). In this case, considering the PV systems of
each cluster as a virtual power plant, the benefit of the smoothing is
evaluated comparing the forecast performance of a single PV cluster
with the accuracy obtained combining the forecast of different adjacent

Fig. 1. (A) PV plants in the region of interest; (B) Regional electric consumption and energy supply from DSO using renewable energy sources (RES) and fossil energy sources and from
TSO; (C) PV plants capacity distribution (reporting the maximum capacity above the bin).
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PV clusters. The same study was carried out also for the accuracy of the
power estimation. Finally, if a parametric probabilistic approach is
used, the prediction intervals are usually estimated supposing a normal
distribution of the forecast errors as in Lorenz et al. (2009b) or Marquez
and Coimbra (2011). This hypothesis provides a correct estimation of
the 95th quantile but is not reliable for other confidence levels. In this
work, it was shown that the experimental error distribution is far to be
Gaussian and a method to estimate the prediction intervals taking in to
account the deviation from the normal distribution, was developed. It
was proved that this method provides very reliable results at different
confidence levels.

In Section 2 the data set used to training and test the machine
learning models are described. In Section 3 the upscaling methods and
the estimation and forecast models are explained in details. In Section 4
a short description of the used data-driven algorithms is provided. In
Section 5 the metrics adopted to evaluate the estimation and forecast
accuracy are summarized. In Section 6, the accuracy obtained applying
the methods to the test data set is evaluated and discussed. Finally, in
Section 7, summary and conclusions are given.

2. Data

2.1. PV power generation data

The upscaling method was used to estimate and forecast the dis-
tributed generation of 1985 PV plants in a small part of the South Tyrol
Region in the North of Italy with an installed capacity of 68.2 MWp (at
the end of 2015). This area of around 800 km2 has a complex orography
and variable weather conditions (see Fig. 1A).

In 2015 the electric demand in the controlled area was 1058 GWh
while the PV generation provided 73 GWh (see Fig. 1B). Thus, the re-
gion has a photovoltaic penetration of 7% mainly due to small dis-
tributed PV plants with capacity lower than 50 kWp (see Fig. 1C).

The two years (2014–2015) of PV power generation data were
provided by the local Distribution System Operator (Edyna) with a time
resolution of 15min.

2.2. Satellite derived irradiance data

The satellite derived irradiance data used for power estimation
come from the Geostationary radiative fluxes products, under Météo-
France responsibility. It was obtained by OSI SAF SSI algorithm (Ocean
and Sea Ice - Satellite Application Facility - Surface Solar Irradiance)
applied to the satellite images provided by METEOSAT-10 (MSG-3) at

0° longitude, covering 60S-60N and 60W-60E, with a 0.05° horizontal
resolution (EUMETSAT, 2017), and hour granularity.

It should be remarked that in the satellite data the irradiance at sun
elevation lower than 10° was always zero. Thus to reduce this error the
data were post-processed with a cubic interpolation of the clear sky
index at low sun elevation angles.

2.3. Numerical weather prediction data

The numerical weather predictions used for the day-ahead forecast
were generated by the Weather Research and Forecasting (WRF–AWR
3.6.1) developed by NCAR (National Center of Atmospheric Research).
The model is run operationally by the US National Weather Service and,
being open source and easily portable, it is widely used around the
world for research and weather forecasts (Skamarock et al., 2008).
Daily hindcasts were performed for the year 2014 and 2015. The model
was initialized at 12 UTC, analyzing the 24 h forecasts starting from the
following 00 UTC, which is the typical procedure for the NWP solar
day-ahead forecast. The model domain is centered over Italy with a
horizontal resolution of 12 km, a higher resolution inner domain is
nested centered on the region of interest, with a horizontal resolution of
approximately 3 km. This horizontal resolution was necessary because
of the complex orography of the region. The output was written every
20min to achieve a better synchronization with the PV generation data.

Details on WRF physics configuration can be found in Pierro et al.
(2016a).

3. Methodology

The developed upscaling method consists in the application of
spatial clustering of PV plants and then in the use of satellite derived
irradiance and numerical weather prediction (NWP) data (centered on
each cluster centroid) as inputs for an Ensemble of Artificial Neural
Networks (ANNsE) that estimates or predicts the regional PV power
output (PO).

For the estimation and day-ahead forecast (24–48 h ahead), we
tested the two following approaches:

1. Models output average: it provides the regional result by the average
of the power estimation/forecast of each cluster. This can be con-
sidered a cluster bottom-up strategy.

2. Model inputs average: it uses themodel inputs calculated on each cluster
to directly provide the regional power estimation/forecast. This ap-
proach is based on the spatial smoothing of the inputs features.

Fig. 2. The two approaches and the neural network models (GNN or 6GNN) used for estimation of PV normalized power output.
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For intra-day forecast (1–4 h ahead) a further ANNsE model that
makes use of past power estimation and one day ahead forecast (de-
rived from the two previous models) was built. It provides the power
output forecast from 1 to 4 h ahead.

The accuracy of the forecasts has been compared to the accuracy of
two different persistence models (simple persistence and smart persis-
tence) used as reference. Indeed both the persistence models are usually
adopted in the literature as reference model for accuracy benchmarking
i.e. (Lorenz et al., 2011; Wang et al., 2015).

Finally, a model to predict the error of the day-ahead forecast was
developed. It was used to estimate the prediction intervals at different
confidence levels.

All the ANNsE were trained on 2014 and tested on 2015.
All the approaches and the models described in details in the fol-

lowing subsections are originally developed for the present work.
Nevertheless, the artificial neural network model used for the forecast
of the PV generation of a single cluster (RHNN) is a modification of a
previously developed model that was built for the prediction of the
generation of a single plant (Pierro et al., 2016a).

3.1. Upscaling methods and models for estimation of regional PV power
generation

The models output average consists in the estimation of the power yield
of each cluster using an ANNsE based model (GNN). The estimation of the
regional yield is then obtained by the average of the GNN output weighted
with the hourly PV capacity: =W Pn(cluster)/Pn(regional)C .

The GNN model inputs the sun azimuth and elevation to account the
sun position and the satellite derived irradiance centered on the cluster
centroid.

The model inputs average provides directly the regional estimation
of yield through a single ANNsE model (6GNN). The 6GNN uses the
average clusters sun position (sun azimuth and elevation) and the sa-
tellite irradiance centered on each cluster centroid, as inputs.

Fig. 2 shows the two different approaches and models used to
provide the estimation of the power yield (PO/Pn). Where Pn is the
installed capacity.

3.2. Upscaling methods and models for day-ahead forecast of regional PV
power generation

Similarly to power estimation, the models output average approach
consists in forecasting the yield of each cluster using an ANNsE based
model (RHNN). The regional forecast is obtained by weighted average
of the cluster forecasts. The model RHNN is a slight modification of the
neural network reported in Pierro et al. (2016a). It uses nine input

features. The first four are the sun azimuth and elevation, the clear sky
global horizontal irradiance (GHIcs) and the ground air temperature
(Tair) predicted by WRF. The other five inputs are the average values
and the standard deviation of the relative humidity predicted by WRF
for the vertical levels below 775 hPa and between 775 hPa and 400 hPa,
and the prediction of the relative humidity at a higher level corre-
sponding to 300 hPa. The last five features take into account the cloud
formation at different atmosphere levels: low clouds approximately
below 2500m, mid clouds between 2500 and 7500m and high clouds
up to 9000m.

The “model inputs average” provides directly the regional PV power
forecast thought a single ANNsE model (PCARHNN). PCARHNN uses as
inputs the sun azimuth and elevation, the clear sky irradiance (GHIcs)
and the 2m temperature (Tair) predicted by WRF on each cluster cen-
troid and averaged over all the clusters. The other input features of the
ANNsE result from the principal component analysis (PCA) pre-pro-
cessing of the relative humidity of 20 vertical atmospheric levels
(RHlevel) predicted by WRF and calculated on the cluster centroids. It
should be remarked that also additional WRF inputs (Tair, Geo-potential
and wind speed of 20 vertical atmospheric levels) were tested for the
day-ahead forecast model. Nevertheless the forecast accuracy did not
improve so that the PCARHNN appeared the best compromise between
input information and model complexity.

The clear sky irradiance (GHIcs) was used as input of the artificial
neural network (ANN) models to take into account the geometric ir-
radiance behavior so that the models need to forecast only the sto-
chastic power variability.

Fig. 3 shows the two different approaches and models used to
provide the day-ahead forecast of the power yield.

It should be noted that all the ANNsE models (RHNN and
PCARHNN) do not input the WRF prediction of the GHI. Indeed it was
proved in Pierro et al. (2015, 2016b) that the irradiance prediction
provided by WRF radiation scheme should be post processed with a
MOS to reach a satisfactory accuracy level.

3.3. Model for intra-day forecast of regional PV power generation

The intra-day forecast model essentially correct the day-ahead
power prediction using previous power estimation. It is based on an
ANNsE and for each hour it inputs the current and the past three yield
estimation together with the day-ahead forecast of the next four hours.
The model provides directly the forecast of regional power output from
1 to 4 h ahead.

Fig. 4 shows the model used for the intra-day forecast of the PV
power yield.

To determine the number of past estimation data to use as ANN

Fig. 3. The two approaches and the neural network models (RHNN or PCARNNN) used for day-ahead forecast of PV normalized power output.

M. Pierro et al. Solar Energy 158 (2017) 1026–1038

1030



inputs the autocorrelation function of the power output was analyzed. It
appears that the maximum autocorrelation is reached for the first three
past hours, thus only three past power estimation together with the
current estimated production were used. This means that the day-ahead
forecast of the first four hours of each day is only weakly corrected by
the ANN model since at least one of the inputs is zero. Nevertheless
models that input 8, 12, 18, 24 past power estimation data were also
tested, but none of them obtained a sensible improvement of accuracy.

3.4. Persistence models

For day-ahead forecast of PV power two different persistence
models are usually adopted as benchmarks to better assess the forecast
performance: the simple persistence and the smart persistence. The
smart persistence leads to a RMSE lower than the simple persistence.

The simple persistence (PM) is a trivial model that assumes power
output of the day to forecast equals to the power output of the present
day. On other hand, there are several smart persistences that can be
adopted (Lorenz et al., 2011; Kaur et al., 2016) and (Pierro et al.,
2016b). In analogy with the model proposed in Pierro et al. (2016b), in
this paper a new smart persistence, namely clear sky persistence (KPM),
was developed. It presumes the persistence of the daily pseudo clear sky
performance index:

=
∑

∑
=

=

PPK dd
PO h P

GHI h
( )

( )/

( )/1000
cs

h n

h cs

1
24

1
24

(1)

where dd is the present day.
Thus the PPKcs is the ratio between normalized PV daily energy

generation and the daily clear sky global horizontal radiation and it can
be considered the equivalent of the daily clear sky index for regional PV
power forecast.

Then the KPM can be calculated as:

+ = ∗ ∗ +PO h H P dd PPK dd GHI h H( ) ( ) ( ) ( )/1000KPM
n cs cs (2)

where h is the hour of the day, H is the forecast horizon (in this case 24
or 48 h), POKPM is the predicted power output, GHIcs is the clear sky
global horizontal irradiance and PPKcs(dd) is the daily pseudo clear sky
performance of the present day (dd), defined in Eq. (1).

For intra-day forecast the simple persistence cannot be adopted
since it brings to an hourly time shift that leads to an unrealistic pre-
diction. On the contrary, the clear sky persistence can be calculated
using the hourly pseudo clear sky performance index:

=PPK h PO h P
GHI h

( ) ( )/
( )/1000cs

n

cs (3)

So that the KPM for intra-day forecast can be obtained as:

+ = ∗ ∗ +PO h H P dd PPK h GHI h H( ) ( ) ( ) ( )/1000KPM
n cs cs (4)

where H is the intra-day forecast horizon that goes from 1 to 4 h.
In this case the hourly PPKcs was calculated only for solar elevation

greater than 10° to avoid singularity at low elevation angles. Then, to
reconstruct the missing data, this index was interpolated with a cubic
function for all the sun elevation lower than 10° considering a night
value for the PPKcs fixed at 0.5. This night value means that the power
yield at low sun elevation angles is the half of the clear sky irradiance
and leads to the lower persistence errors during sun rise and sun set.

3.5. Prediction of day-ahead forecast error

It is important not only to provide the forecast of power output but
also the prediction intervals in which the real power output (PO) could
be found with a fixed probability (confidence level). Under the hy-
pothesis that the errors (residuals) of a given forecast model are nor-
mally distributed with zero mean value and standard deviation (σ) the
actual yield should be found between: (POfor/Pn) ±Zα/2 σ with a

Fig. 4. ANN model for intra-day forecast of PV normalized power output.

Fig. 5. ANN model for prediction interval forecast.
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confidence level 1−α, where Zα/2 is the Z-score for the confidence level
1 - α (i.e. 1- α it is equal to the integral of the standard normal dis-
tribution between −Zα/2 and Zα/2).

Thus the prediction intervals could be calculated forecasting the
standard deviation of the residuals (σfor).

Fig. 5 shows the ANN model used for the prediction of the day-
ahead forecast error.

In this case the ANNsE predicts the standard deviation of the errors
using two input features: the cosine of the sun azimuth and the pseudo
clear sky performance index (defined in Eq. (3)).

Nevertheless, the normal distribution is a poor assumption for solar
forecast errors. Indeed, in the results section (Section 6.4), a method to
improve the prediction intervals reliability taking in to account the
deviations from normal distribution is reported.

4. Data driven algorithms

In this section, the main data-driven algorithms adopted for the
upscaling methodology are briefly described.

4.1. Clustering algorithm

For spatial clustering the K-means method was applied to the geo-
graphical coordinate of each PV plant. K-means is one of the most
popular unsupervised learning algorithm used to group a set

�= ⋯ ∈x xX ( , )m T mxn1 data points into K clusters centered on K re-
presentative points: centroids (where n is the dimension of each point
vector xi with i= 1:m and m > K is the number of points). It is an
iterative procedure based on three steps:

1. Random selection among the m points (xi) of K initial centroids Ck

with =k K1: ;
2. Identification of the index =k i k( ) corresponding to the nearest

centroid to each xi and then calculate the distortion cost function:
…J C C( )k1 ;

3. Update = < >C xk i with =i k i k: ( ) and return to step 2 until the
distortion J converge to its minimum J0.

There are several distortion functions that can be used as reported in
Munshi and Mohamed (2016), in the present work the mean error
function was adopted:

… = < − > =J C C x C i m( ) || || with 1:k i k i1 ( ) 2 (5)

The best number of cluster partitions (Kbest) was selected, running
the k-mean with K=1:20 and calculating the J K( )0 value so that Kbest

corresponds to the knee of the gradient of J0: = + −dJ dK J K J K/ ( 1) ( )0 0 0 .
Moreover to avoid singular initial conditions and to obtain a more re-
liable result, for each k-mean run, the random selection was repeated
twenty times and the initial condition that obtains the lower distortion
was selected.

It should be remarked that if the point coordinates have different
ranges of variability they should be normalized with the respective
mean value and variance to ensure equal weight in the distance cal-
culation.

4.2. Artificial neural network

The ANN is a mathematical model that invokes the structure of
biological neural connections as explained in Basheer and Hajmeer
(2000). Several neural networks architectures have been developed and
used in solar power and irradiance forecast application, see (Zhang
et al., 1998; Mellit, 2008; Raza et al., 2016). In this work, an ensemble
of multilayer perceptron (MLPNN) with one hidden layer was adopted
as basic algorithm for all the estimation and forecast models. The
MLPNN has the ability to imitate natural intelligence in its learning
from existing sample data, so that the algorithm learns from sample

data by constructing input–output connections. In an MLPNN with one
hidden layer, the relation between input stimuli (X) and the neurons
activities (Y) is modeled as follows:

= + +Y f W f W X b b( ( ) )(2) (2) (1) (1) (1) (2) (6)

where (i= 1, 2) is the layer index, f (i) are transfer functions modeling
the intensity of neurons activities, the weights matrices (W(i)) mimics
the strength of the synapse connections between neurons, and the bias
vectors (b(i)) stands for the neurons activation threshold. Thus a MLPNN
is a nonlinear semi-empirical function dependent on a large number of
parameters (W(i) and b(i)). These parameters should be empirically de-
rived by a training and validation procedure, minimizing the error
between the input and the output of a known set of data (training and
validation set). Moreover a stochastic component is introduced in the
MLPNN function by a random choice of the initial condition of the
minimization procedure and by a random partition of the training data
into training and validation sets.

The Levenberg-Marquardt algorithm was used to minimize the
mean square error (MSE) function using 60% of one year data for
training and 40% for validation. The net structure was identified
through an optimization process that provided the best number of
neurons in the hidden layer through a further MSE minimization pro-
cedure. Once the best number of hidden neurons was identified, 500
ANNs were generated using the repeated random sample validation
procedure. Subsequently, a qualified ensemble was selected (around
300 ANNs), choosing all the ANNs with the MSE lower than the average
MSE of the 500 networks. Finally the forecast was obtained by aver-
aging the ensemble outputs.

All the estimation and forecast models described in the previous
section were trained and validated on the data of 2014 and tested on
the data of 2015. Details of the method could be found in Cornaro et al.
(2015).

4.3. Principal component analysis

It is good practice in the setup of a machine learning model to
choose input features strongly correlated with the output but possibly
uncorrelated with each other. Indeed a large number of redundant
input information complicates the training phase increasing dramati-
cally the number of parameters that should be estimated and the local
minima of the cost function. This usually results in lower performance
since the benefit of using more but correlated information are cancelled
out by the increasing of model complexity. The principal component
analysis (PCA) is a method developed by Pearson (1901) that could be
employed to reduce the number of features retaining, at the same time,
the relevant information.

The basic idea of PCA is to project the input features
( = …X x x( , )m T1 ) on the orthogonal base of the eigenvectors
( = …V v v( )T

n
T

1 ) of the covariance matrix, associated to the eigenvalues
…λ λ( n1 ). The new features (obtained by the projection): = =Z XV z{ }k

i

are uncorrelated with each other and their variance is equal to the ei-
genvalues. Since the relevant input information is brought by the fea-
tures that show the higher variances, the principal component is the
subspace of the K component of Z with the higher eigenvalues:

= < ∗= =PC z so that Var PC threshold Var Z{ } ( ) ( )k
i

i m k K1: ; 1: (7)

where the threshold is the fraction of the total variance that has to be
retained, = ∑ =Var PC λ( ) ( )k K k1: is the variance retained and

= ∑ =Var Z λ( ) ( )k n k1: is the total variance.
In Fonseca et al. (2014) this technique was used to reduce the NWP

inputs of their support vector regression model. These inputs were
calculated over all the possible grid points of the region, so that the PCA
was adopted to retain only the relevant difference between the nu-
merical weather predictions of different points in the controlled area.

In the present case, the spatially reduction of the model inputs is
mainly obtained by the clustering algorithm since the NWP were
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calculated only on the centroid points. Instead PCA was used to retain
only the relevant information about the relative humidity of 20 atmo-
spheric levels predicted by WRF on the centroids. In the present work,
the threshold was fixed to 0.95 so that the 95% of total variance was
retained. This allows reducing the inputs of the day-ahead forecast
models from 75 to 5.

5. Accuracy metrics

According to solar forecast literature, the main metrics used to
evaluate the models’ accuracy are reported in Table 1:

All the performance indexes in Table 1 are calculated excluding the
night values (when the clear sky global horizontal irradiance provided
by WRF is equal to zero).

6. Results

6.1. Clustering

The k-mean algorithm aggregates all the PV plants in six areas
corresponding approximately to six municipalities: Naturno, Tirolo-
Merano, Lana, Nalles, Bolzano, Collalbo-Soprabolzano.

Fig. 6 shows the spatial clustering of the PV systems in the con-
trolled area.

In the present upscaling strategy, spatial clustering was used to
determine the representative points in the region (centroids) on which
the inputs or outputs of the ANNsE models should be provided or
predicted. Thus, the power output of each cluster as well as the regional
production is considered as the generation of a virtual power plant with
growing PV capacity. Table 2 reports the regional and clusters capacity
at the end of 2015.

It should be noted that in literature on PV power forecasting, clus-
tering methods were mainly used to grouping typical time series of ir-
radiance or PV production (Wang et al., 2015; Jiménez-Pérez and Mora-
López, 2016; Azimi et al., 2016) and (Munshi and Mohamed, 2016).
Only in few papers clustering was used in upscaling method for spatial
grouping of PV plants or irradiance sensors (Fonseca et al., 2015) and
(Lima et al., 2016).

6.2. Power estimation and forecast (overall results)

It should be specified that the local DSO provided the hourly PV
generation data of five clusters: Naturno, Tirolo-Merano, Lana, Nalles
and Bolzano-Collalbo-Soprabolzano. Therefore for estimation and day-
ahead forecast the models output average approach was performed only
on five clusters, grouping together the two clusters of Bolzano and
Collalbo-Soprabolzano. In the following figures the fifth clusters
(Bolzano-Collalbo-Soprabolzano) is simply called Bolzano cluster.

Fig. 7A shows the accuracy of the regional power estimation ob-
tained by the two approaches: averaging the GNN estimation of each
cluster (models output average) or estimating directly the regional
generation through the model 6GNN (model inputs average). The first
approach requires a greater computational effort with respect to the
second. Moreover for operative use of the first method the actual ca-
pacity of each cluster should be provided while for the second method
only the regional capacity is needed.

In this case, the model inputs average (6GNN) obtained an RMSE of
3% while the models output average (average of GNN output) achieved
an RMSE of 3.2%. Thus, the simplest methodology was also the more
accurate. From Fig. 7A it can be also observed that average RMSE of the
clusters was 4.8% while the regional RMSE was 3.2%. The ensemble
smoothing reduces the RMSE by 33% with respect to the mean clusters
value.

Moreover Fig. 7B shows the error between the satellite GHI and the
GHI ground measurements. The ground GHI was measured every 15
minutes by five reference cell placed in each cluster and was provided

by local DSO. It can be noted that the estimation error is proportional to
the satellite error with lower accuracy in Naturno and higher accuracy
in Bolzano. Nevertheless, the site irradiance error (8–12% of G0) is
greatly reduced both on cluster (4–5.8% of Pn) and regional (3–3.2% of
Pn) scales due to the smoothing effect. Since the regional estimation
error is around 3%, the satellite derived irradiance could be used for
real time power monitoring of the distributed photovoltaic production.

Fig. 8 shows an example of time series obtained by the two power
estimation approaches. Greater estimation errors with respect to the
observed power generation could be noted during variable days (15 and
16 of February 2015).

Fig. 9 reports the accuracy and the skill score (with respect to the
RMSE of the PM) of the day-ahead regional power forecast obtained
with the models output average approach (using the RHNN model) and
the accuracy achieved by the model inputs average approach (using the
PCARHNN model).

It can be observed that the two approaches lead to similar accuracy
with an RMSE of 7.1%, thus the simplest model inputs average should
be preferred. Moreover, also in this case, the RMSE on regional scale is
higher than the mean cluster RMSE: 7.1% vs 8.1%. Thus the ensemble
smoothing on cluster scale leads to a reduction of the regional RMSE of
12% with respect to the average cluster error. Furthermore, the re-
gional skill score of 42.8% is higher than the skill score obtained by
each cluster forecast (Fig. 8B).

Fig. 10 shows an example of time series obtained by the two day-
ahead approaches. In this case, greater estimation errors with respect
the observed power generation could be found during overcast and
variable days (15, 16 and 17 of February 2015).

Fig. 11 shows the RMSE and MAE of regional PV power estimation
(6GNN model) and intra-day and day-ahead forecast (PCARHNN
model) vs forecast horizon, while in brackets the skill score (SS) with
respect to the RMSE of the clear sky persistence (smart persistence) is
reported.

First of all, comparing the 1 day-ahead simple and clear sky per-
sistence from Figs. 7 and 8, it should be noted that the smart model
improves the accuracy of almost 6% with respect the simple model. For
a single site in Bolzano this improvement reaches 10% as reported in
Pierro et al. (2016a).

Furthermore, power estimation model using satellite derived irra-
diance achieves 3% of RMSE and 2% of MAE. Intra-day forecast obtains
a RMSE of 5%–7% (SS from −8% to 34%) and a MAE of 3%–4% (SS
from 0.4% to 40%). Day-ahead forecast achieves a RMSE of 7% and
7.6% (SS from 39% to 45%) and MAE of 4%–5% (SS from 43% to 44%).

For horizon longer than 4 hours the intra-day forecast reduction of
RMSE results in a lower accuracy with respect to the day-ahead fore-
cast. Thus satellite derived data can be used to correct NWP up to 4 h

Table 1
accuracy metrics.

Acronym and formulae

= −e PO h PO h P dd( ( ) ( ))/ ( )h for obs n

= =
∑ =Root Mean Square Error RMSE h

n eh
n

1
2

=
∑ =Mean Absolute Error = MAE h

n eh
n
1

= =
∑ =Mean Bias Error MBE h

n eh
n
1( )

= = −( )Skill Score SS RMSE( ) 100 %with respect to RMSERMSE PM RMSE for
RMSE PM
( ) ( )

( )

= = −( )Skill Score SS MAE( ) 100 %with respect to MAEMAE PM MAE for
MAE PM

( ) ( )
( )

Where
=PO h hourly observed PV power output kW( ) [ ]obs

=PO h hourly forecast of PV power output kW( ) [ ]for

=P dd Daily plant capacity kWp( ) [ ]n

=n number of sun hours .
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ahead. Similar result was found in Wolff et al. (2016) as well as in other
papers. On the contrary, the lower the horizon the higher the persis-
tence accuracy. Thus in this case for 1 h ahead the smart persistence
provides a slightly better accuracy.

For intra-day PV forecast of two different region in Germany, a
RMSE of 3.9%–4.3% of Pn with a skill score of 40%–42.3% were pro-
vided. In Wang et al. (2015) a RMSE of the best intra-day forecast on
regional scale between 1.8% and 3.8% and a SS between 0% and 11.6%
(to 1 up 4 h ahead) were found. The reachable RMSE on regional scale
depends not only on the persistence but also on the size of the con-
trolled areas. In this case the controlled area is quite small thus higher
RMSE are reached: 5%–7%. Nevertheless the skill score from −8% to
34% are inside the state of art range.

For 1 day-ahead forecast in Germany, in Lorenz et al. (2011) the
authors obtained an RMSE of 4.1%–4.3% of Pn with a skill score of
48%–52.8% (with respect to the simple persistence). Fonseca et al.

(2014) found for a region in Japan a best RMSE of 10.24%. The same
authors in Fonseca et al. (2014) found for four regions in Japan a RMSE
between 6% and 7% with a SS between 50% and 60% depending from
the region size. Once again in Fonseca et al. (2015) for three different
areas of size from 32500 to 104996 km2 a skill score between 56% and
54% (with respect to the simple persistence) was found. Finally in Zamo
et al. (2014a) for two counties in France a RMSE of 6% and 5.8% with
an upscaling and bottom-up approach was obtained. Thus, considering
the controlled area of 800 km2, the results presented here: RMSE of
7.1% and SS of 42.8% (with respect to the simple persistence) can be
considered inside the state of art range of accuracy.

Moreover, because of smoothing effect, the accuracy of regional forecast
leads to a reduction of RMSE between 30% and 50% with respect to the
performance obtained with the forecast of a single PV plant generation
(Lorenz et al., 2008; Fonseca et al., 2014). The RMSE of 7.1% obtained for
the regional day-ahead forecast can be compared with the RMSE of 11.8%
achieved in the forecast of the power output of an optimal tilted PV plant
located in Bolzano (Pierro et al., 2016a). Thus the regional forecast provides
a reduction of 40% with respect to the single power output site prediction,
coherently with the literature results.

6.3. Ensemble smoothing effect

The ensemble smoothing effect is related to the number of systems
in the controlled area (Nplants), the PV capacity distribution
( =P withi N1: )n

i
plants and the pair correlation of the error (ρij).

Considering that the forecast errors are usually almost unbiased, the
RMSE of a PV fleet can be calculated as follows:

Fig. 6. PV plants spatial clustering.

Table 2
Regional and clusters PV capacity at the end of 2015.

Cluster name PV capacity

Naturno 8.00 MWp
Tirolo-Merano 14.03 MWp
Lana 12.78 MWp
Nalles 5.82 MWp
Bolzano 24.42 MWp
Collalbo-Soprabolzano 3.19 MWp
Region 68.16 MWp

Fig. 7. (A) accuracy of the GNN model applied to each cluster (models
output average approach) and accuracy of 6GNN model for regional PO
estimation (model inputs average approach) (B) error between the hourly
satellite GHI and the hourly GHI ground measurements (where Go =
1000W/m2).
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where Nh is the number of sun hours, RMSEe is the root mean square
error of the forecast of PV plant ensemble, = ∑ =P Pn

e
i
N

n
i

1
plants is the total

PV capacity, ei and σi are the forecast error and the error standard de-
viation of each plant of the fleet.

If the forecasting errors of the plants are completely correlated
( = =ρ thus RMSE RMSE1ij

i ), the error of the ensemble is:

= ∑ ∑ ⎛
⎝

⎞
⎠= =RMSE RMSEe i

N
j
N P P

P1 1 ( )
plants plants n

i
n
j

n
e 2 so that it is equal to the RMSE

of each plant if all the systems have the same capacity ( =P N Pn
e

plants n).
In this case no smoothing effect can be observed. On the contrary if the
prediction error are perfectly uncorrelated ( =ρ δij ij) the error of the

ensemble is: = ∑ = ( )RMSE MSEe i
N P

P i1

2
plants n

i

n
e so that it is equal to

〈 〉MSE
N

i ensembe

plant
if all the systems have the same capacity. Thus in this case,

the RMSE of the ensemble will decrease as N1/ plant and the large
number value of smoothing effect is reached.

In real case, error correlation between sites depends on the distance
between sites (or controlled area size), the forecast horizon and, the
speed of clouds in the region. In particular, in Lorenz et al. (2009b). It
was showed that the mean correlation of the forecasting error between
two different site decreased exponentially with the distance as:

=ρ eij a d( )ij b so that the RMSE of the ensemble decreases with the size
of the controlled area following the same law.

To study the smoothing effect on a cluster scale, the RMSE of dif-
ferent ensembles of adjacent clusters was calculated. Fig. 12A and B
shows the estimation and forecast error as a function of the maximum
distance between the centroids of each ensemble. Fig. 12C reports the
mean pair-correlation between forecast errors of all the adjacent clus-
ters belonging to the same ensemble. Also on a cluster scale the cor-
relation as well as the RMSE of the ensembles decrease exponentially
with the size of the area (maximum distance between centroids). In this
case, the pair-correlation between cluster errors shows a slower decay
with respect to the correlation between two single plants errors (Lorenz
et al., 2009b). Indeed, the meteorological conditions at clusters scale
remains strongly correlated for larger distances with respect to the
single points.

Fig. 12C also reports the error reduction factor of the forecast and
persistence models and Fig. 12D shows the skill score. It can be ob-
served that the persistence factor decreases with the distance with
lower rate than the forecast factor while the skill score increases line-
arly of 0.1% per km. The skill score is usually calculated to compare the
forecast accuracy achieved in different sites or in different years since it
doesn’t depend on the irradiance variability. In case of plants with si-
milar characteristics it remains almost constant between different sites
or years ) (Pierro et al., 2016b). On the contrary, for the regional

Fig. 8. Example of power estimation trend for five days of February 2015.

Fig. 9. Accuracy (A) and skill score (B) of the RHNN model
apply to each cluster (models output average approach),
accuracy of PCARHNN model for 1 day-ahead regional
power forecast (model inputs average approach) and accu-
racy of the simple persistence model (A).

Fig. 10. Example of day ahead forecast trend for five days of February 2015.
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forecast the skill score increases linearly with the controlled area, thus
the reduction of RMSE is achieved not only with the decrease of solar
variability (RMSE of persistence model) but also with the improvement
of forecast capability of the models due to the smoothing effect.

Finally, the fits of the mean RMSE (all with coefficients of de-
termination R2 greater than 0.985) allow the extrapolation of the
RMSEe of larger ensemble areas. For power estimation, the RMSEe could
be reduced to 1% of Pn for ensemble areas with maximum distance
between cluster centroids around 150 km. For day-ahead power fore-
cast a RMSEe of 4% of Pn and a skill score of 60% could be achieved
with distance around 200 km. This confirms that the de-correlation
distance, for hourly values, is around 100–200 km (Perez et al., 2011;
Hoff and Perez, 2012). Moreover the extrapolation proves that the
obtained accuracy is in the “state of the art” range. Indeed, as reported
in the previous subsection, in Lorenz et al. (2011) an RMSEe of
4.1%–4.3% of Pn with a skill score of 48%–52.8% was obtained for
distances around 500 and 750 km while in Fonseca et al. (2014) a
RMSEe between 6% and 7% with a skill score between 50% and 60%
was achieved for distances between 200 and 400 km.

6.4. Prediction intervals

Fig. 13A shows the standard deviation of the forecast error pre-
dicted by the model described in Section 3.5. The maximum standard
deviation values are reached near noon with variable irradiance cor-
responding to PPKcs between 0.3 and 0.6.

Fig. 13B shows the reliability plot i.e. the frequency of observation
that lays inside of each prediction interval versus the respective con-
fidence levels (expected probability). The frequency of observation was
evaluated during the years 2015. A prediction of the forecast errors is
completely reliable if the observed frequency is equal to the corre-
sponding confidence level (gray dash line in Fig. 13B). Fig. 13C reports
the probability distribution function (PDF) of the error normalized by
the predicted standard deviation ( =Ne e σ/ for) of the year 2015 (black
line) and the standard normal distribution (red line).

In the present case, the model provides an overestimation of the
prediction interval since the observed frequency is almost always
greater than the expected one (Fig. 13B). Indeed, the PDF of the nor-
malized error is considerably different from the standard normal dis-
tribution and the probability of ⩽ ∓Ne Z| | α/2 is greater than −α(1 ). As
mentioned in Section 3.5, the normal distribution of forecast error is a

Fig. 11. RMSE and MAE of regional PV power estimation (6GNN model) and intra-day and day-ahead forecast (PCARHNN model) vs forecast horizon (in brackets the skill score with
respect to the RMSE and MAE of the clear sky persistence).

Fig. 12. (A) and (B) RMSE of estimation and day-ahead forecast of different ensembles of adjacent clusters; (C) mean pair-correlation and error reduction factors of forecast and
persistence models; (D) skill score with respect to the RMSE of the persistence model.
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too strong hypothesis. It can be adopted, as in Lorenz et al. (2009b) or
Marquez and Coimbra (2011), only to provide the 95th percentile, since
the observed PDF of the error is contained inside the standard normal
one. Therefore, the observed frequency is equal to the expected 95% of
confidence (see the black squares in Fig. 13B). On the contrary, this
assumption does not work as well for the prediction intervals corre-
sponding to different confidence levels. Nevertheless, for each con-
fidence level it was possible to predict a correction coefficient σ( )α

for
/2 so

that:

⎛

⎝
⎜ ⩽ ⎞

⎠
⎟ = ⎛

⎝
⎜ ⩽ ⎞

⎠
⎟ ≅ −P Ne

σ
Z P e

σ σ
Z α1 .

α
for α for

α
for α

/2
/2

/2
/2

(9)

In this way, the forecast of the standard deviation of the error de-
pends not only on the zenith angle and the pseudo clear sky perfor-
mance index but also on the considered confidence level:

=σ PPK α σ σ(ϑ , , )for
zenith cs PPK

for
α
for

ϑ , /2zenith cs . The correction was calculated on
the PDF of Ne of the year 2014 and tested on the year 2015. Fig. 11C
also shows the PDF of Ne σ( / )α

for
/2 of the test year (gray line). It can be

observed that integral between −Zα/2 and Zα/2 of the modified PDF is
now almost equal to integrals of the standard normal distribution.
Fig. 13B also reports the reliability plot of the corrected prediction
intervals. This good result was possible since the PDF of Ne of different
years (2014 and 2015) are very similar, so that the corrections factors
calculate on the PDF of the year 2014 are effective also for the year
2015.

Fig. 14 reports the trend of the prediction interval for five days of
February 2015. It can be observed that the extent of the interval is
reduced when passing from overcast to clear sky days.

7. Summary and conclusion

A new upscaling method was developed and used for estimation and
forecast of the PV distributed generation of 1985 PV plants in a small
area of the South Tyrol region (800 km2) in Italy. It was based on spatial

clustering of the PV fleet and neural networks models making use of
satellite or NWP data. Two different approaches were investigated. In
the first approach, estimation and forecast of the power generation of
each cluster were averaged to obtain the regional prediction (models
output average). The second approach provided directly the regional
power prediction using inputs centered on each cluster centroid (model
inputs average). In this case, the model inputs average gave slightly
better results.

This study allowed a complete assessment of the forecast accuracy
at different horizons, from 0 h ahead (power estimation) to 48 h ahead.
The power estimation model achieved 3% of Pn in RMSE and 2% in
MAE. Intra-day forecast (from 1 to 4 h) obtained a RMSE of 5%–7% and
a MAE of 3%–4%. The skill score with respect to the accuracy of the
smart persistence model was between−8% and 34% in RMSE and from
0.4% to 40% in MAE. One and two days-ahead forecast provided a
RMSE of 7% and 7.5% (with a skill score of 39% and 45%) and a MAE
of 4% and 5% (with a skill score of 43% and 44%).

The model inputs average is the simplest upscaling strategy that
requires the lower computational effort and needs very few input in-
formation that should be provided by users. It could be easily adopted
by forecast providers to deliver the regional PV power estimation and
mid-term forecast to DSO, TSO, energy traders, and aggregators.

The models output average was also used to study the smoothing
effect on cluster scale. This effect improved the accuracy of regional
power estimation and forecast with respect to the mean clusters value.
It reduced the RMSE of power estimation of 33% and the RMSE of day-
ahead forecast of 12%. It was found that each cluster behaved like a
single plant since the accuracy improvement due to the ensemble
smoothing followed the same exponential law found for the ensemble of
plants. Extrapolating the accuracy improvement on wider areas, the
developed upscaling methods brought to an accuracy comparable with
the one found in literature for areas greater than 200×200 km2.

Also persistence followed the same exponential law but it showed a
slower decrease of error with respect to the forecast. It appeared that
the skill score increased linearly with the size of the region with a rate

Fig. 13. (A) predicted standard deviation of the forecast error; (B) reliability plot; (C) PDF of the error normalized by the predicted standard deviation.

Fig. 14. Example of prediction interval trend for five days of February 2015. The gray colours correspond to different confidence levels: 95%–75%–50%–25%; from the clearest gray
showing the interval with 95% of confidence to the darker gray showing the interval with 25% of confidence. The dots represent the observed values while the white line is the forecast.
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of 0.1% per km. Thus, the wider is the considered area the greater is the
benefit of using a more complex forecast model instead of persistence.

The ensemble smoothing of power estimation is much more effec-
tive compared to the PV forecast, since the accuracy increases with the
increasing of the area faster than the accuracy of the forecast.

A model to estimate the forecast error was also developed. It is
based on an ensemble neural network model that forecasts the standard
deviation of the error coupled with a probabilistic correction that takes
in to account deviations of the PDF of the error from the normal dis-
tribution. Indeed using a parametric probabilistic approach, the pre-
diction intervals are usually estimated supposing a normal distribution
of the forecast errors but this is a poor assumption. This hypothesis
provides a correct estimation of the 95th quantile but is not reliable for
other confidence levels. The proposed model allows a very reliable
computation of the prediction intervals so that the frequency of the
observations that falls inside each interval is almost equal to the as-
sociate confidence level. Thus prediction intervals can be employed not
only to reduce the energy reserve (by the use of 95th quantile of the
forecast errors) but also to estimate the probability of a specific solar
energy bid on the energy markets.
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