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We derive analytic approximations to the solutions of the Lane–Emden equation, a basic equation in 
Astrophysics that describes the Newtonian equilibrium structure of a self-gravitating polytropic fluid 
sphere. After recalling some basic results, we focus on the construction of rational approximations, 
discussing the limitations of previous attempts, and providing new accurate approximate solutions.
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1. Introduction

Polytropic fluid sphere models are ubiquitous in Astrophysics. 
They have been instrumental in the development of stellar struc-
ture theory [1], as well as in the investigation of the dynamics of 
spherical galaxies and star clusters [2]. Gaining insight into their 
equilibrium and stability properties is therefore an important task 
that has attracted, and still attracts much interest.

Polytropic models are characterized by a simple equation of 
state, p ∝ ρ(n+1)/n , with p and ρ the fluid pressure and density, 
respectively, and n the so-called polytropic index. In an isotropic 
configuration, the Newtonian, hydrostatic equilibrium structure of 
the fluid sphere is then determined by a second order, generally 
nonlinear ordinary differential equation for the gravitational po-
tential,

y′′ + 2

x
y′ = −yn , (1)

known as the Lane–Emden equation [LEE hereafter; here yn =
ρ(x)/ρ(0), x is a scaled radial coordinate, and the prime denotes 
derivation with respect to x]. The problem is completed by the 
boundary conditions

y(0) = 1, y′(0) = 0 , (2)

which ensure regularity at the sphere center. For 0 ≤ n < 5, the 
solutions of the boundary value problem (1)–(2) decrease mono-
tonically with x and vanish at a finite radius x1 (the star radius, 
in a stellar context), which is a rapidly increasing function of n
(x1 → ∞ for n → 5).
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Exact solutions to the LEE are only known for the linear cases 
n = 0, 1, and for n = 5. For other values of n, well-known numer-
ical methods for initial value problems may be used to compute 
accurate approximate solutions. Reference results have been ob-
tained in [3] and [4], through Runge–Kutta integrations, and in 
[5], using the Chebyshev pseudospectral method. Analytic approx-
imations have also been sought; classical works are [6], focusing 
on rational approximations; [7], in which a sophisticated func-
tional ansatz was developed; and [8], where the delta-perturbation 
method was used to derive an approximation for x1(n).

In the last decade, the search for approximate solutions to the 
LEE has produced many papers (see, e.g., the list given in the in-
troduction of [9]), but, apparently, few useful results. A problem is 
that most of these works restrict to the interval [0, 1], denoted as 
the “core region” in astrophysical contexts, even though the radial 
ranges of interest are typically much larger. Consider, for exam-
ple, the n = 3 polytrope, which provides a reasonable description 
of the Sun’s structure, and is consequently widely used as a test 
case: since its boundary is at x = x1 � 6.897, a useful approxima-
tion for the structure of this polytrope should cover a range about 
seven times larger than the core region.

Moreover, in the core region, approximate solutions of any de-
sired accuracy can be easily constructed using conventional Taylor 
series expansions about the origin, because the convergence range 
of these series is always significantly larger than unity (see [10]). It 
is therefore unclear why so many papers in recent years have fo-
cused on using more complicated approaches (Adomian decompo-
sition, Homotopy analysis method, Boubaker polynomials, among 
others; see [9] and references therein) to derive alternative approx-
imations over [0, 1]. Often in these papers important works on the 
properties of series solutions to the LEE, such as [10] and [11], are 
not cited, and a detailed comparison with relevant previous work 
is lacking.
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This provided motivation for the present Letter, whose first ob-
jective is to recall some basic results that should be taken into 
account, and used as a reference where appropriate, by anybody 
seeking new approximate solutions to the LEE. We shall then focus 
on the construction of rational approximations, clarifying the lim-
itations of previous attempts, and deriving some new, simple and 
accurate approximate solutions to (1)–(2).

2. Some basic results

a) Exact solutions. It is said in [9] that “only the cases n = 0, 
n = 1 and n = 5 can be solved analytically. . . ”. This is probably 
true, but, as far as we know, it has not yet been proven. It was 
stated in [12], without a proof, that application of the Lie group 
analysis shows that (1) is nonintegrable in a closed form for other 
values of n, because its Lie algebra is zero-dimensional. But then, it 
was also noted that there are some – albeit rare – cases in which a 
zero-dimensional Lie algebra does not preclude integrability. Thus, 
it would seem more prudent to say that the cases n = 0, 1, 5 are 
the only ones that are currently known to be analytically solv-
able.

b) Scaling. In some works, as for example in [13], an apparent 
generalization of the problem was considered, with the boundary 
condition on y given by

y(0) = a , (3)

a being a positive constant. It is readily seen, however, that the 
scaling

y = aỹ, x = x̃/a(n−1)/2, (4)

maps (1) into an equation of the same form for ỹ(x̃), with 
ỹ(0) = 1, thus reducing the problem to the standard one. Most of 
the figures of [13] are just illustrations of this scaling; for example, 
the only difference between the solutions displayed in Figs. 7, 8, 
and 9 is a scaling factor a for the y-axis and a 1/a factor for the 
x-axis, in agreement with (4).

c) Series solutions. Taylor series expansions for y about the ori-
gin (up to the x10 power) were given in [13], for several values 
of n. Those series are special cases of the well-known general ex-
pansion

y � 1 − 1

3! x2 + n

5! x4 − n(8n − 5)

3 × 7! x6

+ n(122n2 − 183n + 70)

9 × 9! x8

− n(5032n3 − 12 642n2 + 10 805n − 3150)

45 × 11! x10 + . . . (5)

(see, e.g., [4] and references therein). Analytic calculation of higher 
order terms in (5) is cumbersome, but, when needed, such terms 
can be easily obtained numerically. We have computed some of 
them using the stable, coupled recurrence relations for y and ρ
given in [10], with the purpose of estimating the accuracy of (5), 
truncated at the x10 term, in the core region. We find that, for n =
1, 2, 3, 4, the values of y(1) are correct to 9, 5, 4, and 3 decimal 
digits, respectively. Accuracy is of course higher at smaller values 
of x. Thus, up to n = 4, the first six terms in the series expansion 
(5) yield sufficient accuracy in the core region for most practical 
purposes.

We note that, since the Taylor series expansion converges in 
the core region, and can be easily computed with high accuracy, it 
should be used as a benchmark for any alternative approximation 
over [0, 1].
d) Convergence of the series solutions. It has long been known 
that, for n large enough, the Taylor series expansions about the 
origin do not cover the whole radial extent of the star (see, e.g., 
[14] and [15]). More recently, the convergence radius xs of the se-
ries expansion was accurately determined (see [10] and [11]) for 
several values of n, through non-trivial numerical computations. It 
was found that xs is a decreasing function of n, and that the ex-
pansion converges over the whole radial extent of the star only for 
n smaller than about 1.9. For larger values of n, xs becomes a frac-
tion of x1: xs/x1 is less than 2/5 for n = 3, and only about 2/15
for n = 4. This behavior results from the presence of singularities 
in the complex plane that were investigated in detail in [11]. Both 
in [10] and in [11] it was also shown that the singularities may 
be transformed away through appropriate changes of independent 
variable. The expansions in the new variables do converge up to 
the star boundary, albeit quite slowly (very slowly for n > 3).

e) Other approximations. Despite the long history of the subject, 
few useful, alternative analytic approximations have been derived 
that cover the whole radial range. The one constructed in [7] is 
accurate, and in principle holds for any n, but has a complicated 
structure, with three coefficients to be fitted, case by case, and 
an arbitrarily chosen function; optimal coefficients were only com-
puted for n = 0.5, 1, 1.5, 2, 3, and for some other n values larger 
than 5 (see Table 1 of [7]). The (2, 2) Padé approximant computed 
in [6] was shown to be accurate for 0 ≤ n ≤ 2.5, but its behav-
ior for larger n is unclear. Approximations of a different form were 
derived in [10], which require a priori knowledge of both x1 and 
y′(x1). The coefficients of these approximations were tabulated for 
integer and half-integer values of n, in the range 1 ≤ n ≤ 4.

3. Rational approximations

A well-known technique for extending the accuracy of the se-
ries expansions beyond their radius of convergence is that of the 
Padé approximants, which are rational approximations constructed 
from the Taylor series (see, e.g., [16]). In the context of the LEE, 
this approach was first pursued in [6], where the first two di-
agonal Padé approximants, y(1,1)

n and y(2,2)
n , were computed. The 

second Padé approximant, which results from imposing the first 
four terms in the Taylor series expansion around the origin, was 
written as

y(2,2)
n = a1 + a2x2 + a3x4

b1 + b2x2 + b3x4
, (6)

with

a1 = b1 = 45 360(17n − 50) ,

a2 = 420(178n2 − 951n + 1250) ,

a3 = 1290n3 − 10 849n2 + 29 100n − 24 500

b2 = 420(178n2 − 645n + 350) ,

b3 = 15n(86n2 − 321n + 190) . (7)

For 0 ≤ n ≤ 2.5, it provides a good approximation over the whole 
radial extent of the star, because it yields fairly accurate values of 
the star radius, with a maximum error, at n = 2.5, of about 1.7%. 
The behavior for larger n was not discussed in [6], but one may 
foresee problems when approaching n = 3, because the coefficients 
a1 and b1 vanish for n = 50/17 � 2.941. In fact, y(2,2)

n can be seen 
to exactly reduce to y(1,1)

n at n = 50/17, and we may consequently 
expect loss of accuracy on both sides of this value.

Things are a little worse, however, because of other changes 
of sign in the coefficients, which yield a complicated structure for 
the roots of the numerator of (6), x2 = (−a2 ±

√
a2 − 4a1a3)/2a3. 
1± 2



1804 R. Iacono, M. De Felice / Physics Letters A 379 (2015) 1802–1807
Fig. 1. The roots x2
1± of the numerator of (6) (squares for x2

1+ , and asterisks for x2
1−), as a function of n. The black line gives reference values of x2

1 from our Runge–Kutta 
numerical integrations.
In Fig. 1, these roots are displayed as functions of n (squares 
for x2

1+ , and asterisks for x2
1−), and compared with values ob-

tained through accurate Runge–Kutta integrations (black curve). It 
is seen that x2

1+ is positive only for n smaller than about 3 (a 
more accurate threshold being n � 3.0084). This root yields fairly 
accurate values for the star radius up to n � 2.5, as noted in 
[6], but then starts to diverge from the numerical values. More-
over, at n = 50/17, the x2

1− root crosses the zero line, and for 
50/17 < n < 3.0084 both roots are positive (0 < x2

1− < x2
1+). As a 

consequence, the (2, 2) Padé approximant completely breaks down 
just above n = 50/17. Then it recovers, and is accurate again in a 
very narrow interval around n = 3. For larger values of n, the x2

1−
root diverges, with an asymptote (not shown) at n � 3.705, above 
which there is no positive root, and consequently no zero of yn .

The accuracy of the (2, 2) approximant for n = 3,

y(2,2)
3 = 1 − (1/108)x2 − (11/45 360)x4

1 + (17/108)x2 + (1/1008)x4
, (8)

which was not noted in [6], is worth being stressed, because of 
the practical importance of the n = 3 polytrope. The accuracy of 
(8), whose reasons are unclear, was pointed out in a later work 
[17], in which the (2, 2) approximant for yn was rederived, with 
no mention to [6] (see Table II of [17], comparing (8) with a refer-
ence numerical profile). However, neither the exceptionality of the 
n = 3 case, nor the problems of the (2, 2) approximant for smaller 
and larger values of n were recognized in [17]. We will come back 
to (8) later in the paper.

3.1. Improving on the (2, 2) Padé approximant

To improve on the previous results, one could construct diago-
nal approximants of higher order. This might get rid of the singu-
larity near n = 3, and eventually extend the n domain of validity, 
at the expense of an increased complexity of the approximation 
[(3, 3) approximants for n = 3/2 and n = 3 were computed in [6], 
which turned out to be very accurate].

Another possibility is to look for non-diagonal approximants, 
even if they usually are less accurate than the diagonal ones. Using 
the first three terms in the Taylor expansion about the origin, we 
can write the (1, 3) Padé approximant as

y(1,3)
n = 1 − x2/x2

1

1 + b1x2 + b2x4 + b3x6
, (9)

with
Table 1
Approximation (13) (n = 2).

x y(x) [Eq. (13)] y(x) [Horedt]

0.1 0.9983350 0.9983350
0.5 0.9593527 0.9593527
1. 0.8486541 0.8486541
3. 0.2418559 0.2418241
4. 0.0489163 0.0488401
4.3 0.0068288 0.0068109
4.35 0.0003650 0.0003660

b1 = 1

6
− 1

x2
1

, b2 = 1

6

(
b1 − n

20

)
, (10)

b3 = 8n2 − 47n + 70

15 120
− 10 − 3n

360

1

x2
1

. (11)

We can then determine the star radius by imposing the fourth 
term in the Taylor expansion, as done for the (2, 2) approximant, 
or use numerical values for it. In the former case, we find:

x2
1 = 6 (12 600 − 8460n + 1440n2)

12 600 − 13 490n + 4929n2 − 610n3
. (12)

The resulting approximation is quite good up to n = 2 (not shown), 
but then loses accuracy, even if there is no complete breakdown 
before n = 3. Overall, it is inferior to the (2, 2) Padé, but it is very 
accurate for some values of n. In particular, for n = 2, it takes the 
form

y(1,3)
2 = 1 − 19

360 x2

1 + 41
360 x2 + 1

432 x4 − 13
226 800 x6

, (13)

which yields a radius x1 = (360/19)1/2 = 4.352857, extremely 
close to the numerical value x1 � 4.352875. Approximation (13)
is very accurate over the whole radial extent: see Table 1, where it 
is compared with a reference profile computed by Horedt [4].

The (1, 3) Padé approximant globally improves if we release 
the constraint deriving from the fourth term in the Taylor expan-
sion and place the numerical values of x1 in (9)–(11). This causes 
a slight loss of accuracy at small x that is, however, amply com-
pensated by an accuracy gain in the outer region of the star. The 
root mean square (RMS hereafter) difference (over [0, x1]) between 
the resulting approximant and the numerical solution is plotted 
in Fig. 2 as a function of n (blue curve): it is smaller than 10−3

for 0 < n < 2.2, and remains smaller than 5 × 10−3 up to n = 3
and slightly beyond. Errors are even smaller around some partic-
ular values of n (n = 1.2, 2, 3). In the same figure, we also show 
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Fig. 2. Root mean square errors over [0, x1], for several approximations, computed using the numerical profiles as a reference. The brown curve refers to the (2, 2) Padé of 
[6], while the blue one is for the non-diagonal Padé approximation (9)–(11), with numerical values for x1 [the green dots are for the same approximation, but with the fit 
(15) for the star radius]. The red curve is for approximation (18), and the black crosses for the best approximation given in [10]. (For interpretation of the references to color 
in this figure, the reader is referred to the web version of this article.)
Table 2
Fit (15) for the star radius.

n x1(n) [Eq. (15)] x1(n) [Horedt] Error

0.5 2.7527827 2.7526980 3.1 ×10−5

1. 3.1421898 3.1415927 1.9 ×10−4

1.5 3.6538835 3.6537537 3.6 ×10−5

2. 4.3521313 4.3528746 1.7 ×10−4

2.5 5.3539359 5.3552755 2.5 ×10−4

3. 6.8957511 6.8968486 1.6 ×10−4

3.5 9.5343124 9.5358053 1.6 ×10−4

4. 14.951840 14.971546 1.3 ×10−3

4.5 31.599799 31.836463 7.4 ×10−3

the errors for the (2, 2) Padé approximant (brown squares), which 
are significantly larger than those of the (1, 3) Padé approximant 
in the range [1.1, 2.1], and then a little smaller before the break-
down, close to n = 3. There is also a small region around n = 0.9
in which the (2, 2) approximant is more accurate. Overall, we can 
say that the two approximants complement each other, and that 
(9)–(11), with the star radius enforced, yield a simple and fairly ac-
curate approximation over the whole range 0 ≤ n ≤ 3.1, which can 
be used as an alternative to Pascual’s (2, 2) approximant where the 
latter breaks down, or loses accuracy.

A difficulty with this approach is that accurate values of x1 in 
the range [0, 4.5] have only been tabulated for integer and half 
integer n’s, but this can be obviated by using a good fit for x1(n). 
A simple fit by Buchdahl [18],

x1(n) � 12.3 (1 − 0.128n)

(5 − n)(1 − 0.15n)
, (14)

which is within 0.5% from the tabulated reference values over 
[0, 4], is adequate for n > 2, but leads to larger errors for smaller 
values of n (not shown). A similar result is obtained using an em-
pirical fit by Pascual [6], whose accuracy is close to that of (14). 
We have therefore sought a more accurate fit by adding a quadratic 
term in the numerator of (14), while keeping fixed the 5 − n term 
in the denominator, which arises from analytic considerations. The 
new fit,

x1(n) � 12.2378 − 1.2249n + 0.0187n2

(5 − n)(1 − 0.1223n)
, (15)

has been computed from the values of x1 resulting from our RK 
integrations, using a function of the MATLAB Optimization Toolbox 
that implements a nonlinear least-squares trust-region approach.
Table 2 shows values of x1 obtained from (15), for integer and 
half-integer values of n over [0, 4.5], and compares them with ref-
erence values by Horedt [3]. The fit (15) is definitely more accurate 
than (14), particularly for n < 2. Using it in (9)–(11) yields the 
green dots in Fig. 2, which nicely follow the curve obtained us-
ing the numerical values of the star radius.

3.2. Extending the n range of the approximation

Here, we seek analytic approximations that can be used above 
n = 3, and possibly up to n = 5. As we have seen, the approxima-
tion (9)–(11) does not qualify, because it rapidly becomes inaccu-
rate above n = 3. A simple approximation that remains accurate 
beyond n = 3 was given in [10]. It has the form

y = 1 − cx2

(1 + ex2)m
. (16)

The coefficients (c, e, m) were obtained numerically, either by 
identifying the expansion of (16) about the origin with (5), up to 
the x6 terms, or by enforcing the first term in the expansion, to-
gether with the numerical values of x1 and y′(x1). It was shown in 
[10] that the latter approach gives higher accuracy. We have com-
puted the corresponding RMS errors, using our numerical solutions 
as a reference, and displayed them as black crosses in Fig. 2: errors 
are smaller than 1% over 1 ≤ n ≤ 4.5, confirming that this simple 
approximation is adequate over a wide n range.

To improve upon (16), we would like to construct an approx-
imation of comparable accuracy and complexity that is fully ana-
lytic and does not need a priori knowledge of y′(x1). To do so, we 
need to better understand why (16) works so well. A hint comes 
from [11], where the singularities of the LEE in the complex plane 
were studied in detail. It was shown in that work that, besides a 
mild singularity at the star boundary, the LEE, for any n larger than 
unity, only has a singularity on the negative x2 axis, at some point 
x2 = −x2

s (n), with xs a real number that determines the radius of 
convergence of the series expansions about the origin. Accurate 
values of x2

s (n) were computed numerically (see Table 1 of [11]), 
and are reported here in the second column of Table 3. It was also 
noted in [11] that the dominant singular behavior is

y ∼ K

[1 + (x/xs)2]σ , σ = 2

n − 1
, (17)

with K a coefficient depending on n and xs . This suggests that 
(16) might work well because it captures the dominant behavior
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Table 3
Comparison between the values of 1/e from Eqs. (20) and (21)
and the values of x2

s computed numerically in [11].

n 1/e x2
s

1.75 21.3083 23.0939
2 15.2001 15.7179
2.25 11.6463 11.7947
2.5 9.3597 9.3915
2.75 7.7827 7.7802
3 6.6388 6.6298
3.25 5.7765 5.7696
3.5 5.1066 5.1034
3.75 4.5731 4.5729
4 4.1393 4.1408
4.25 3.7802 3.7824
4.5 3.4785 3.4804
4.75 3.2215 3.2226
5 3. 3.

5.25 2.8070 2.8059
5.5 2.6374 2.6352
5.75 2.4872 2.4840
6 2.3532 2.3491

of y about the complex pole. Analysis of Tables 2 and 3 of [10]
confirms this hypothesis; in particular, the values of 1/e computed 
from Table 2 are quite close to those of x2

s , and the values of m are 
close to σ .

This leads us to consider a modification of (16) of the form

y = (1 − x2/x2
1)(1 + bx2)

(1 + ex2)σ
. (18)

The radius in the numerator is enforced, as in [10], but we fix 
the exponent in the denominator to σ , and add another quadratic 
factor in the numerator, to better capture the small-x behavior. The 
coefficients (b, e) are determined by enforcing the first two terms 
of the series expansion about the origin, yielding

b = σ e − δ , (19)

and

e = δ
(n − 1)

(n − 3)

⎡
⎣−1 +

√√√√1 − n − 3

δ2

(
δ

x2
1

− n

120

)⎤
⎦ , n 
= 3 ,

(20)

e = 1

δ

(
1

40
− δ

x2
1

)
� 0.15063 , n = 3 ,

(21)

with δ the positive quantity

δ ≡ 1

6
− 1

x2
1

. (22)

Note that, for n = 5, letting x1 → ∞ gives e = 1/3 and b = 0, so 
that we recover the known analytic solution. The RMS error of ap-
proximation (18) is shown as a red curve in Fig. 2; we restrict to 
values above n = 1.5, because in the range 1 < n ≤ 1.5 there are a 
few points in which the value of e computed from (20) has a small 
imaginary component. The new approximation covers the range 
1.5 < n ≤ 4.5 with good accuracy, with errors that are of about 
10−3 or smaller up to n = 3.9. The red curve crosses the green 
one [non-diagonal Padé with fit (15) for the star radius] at about 
n = 2.2. Below this value, the approximation (9)–(11) is more ac-
curate, whereas for larger values of n, (18) is definitely better. The 
new approximation is also consistently more accurate than (16), 
in a RMS sense, except in a neighborhood of n = 3.5. Thus, we 
have a simple, fully analytic approximation that is accurate over a 
wide n range, and only needs the enforcement of the value of the 
star radius to preserve a fair accuracy in the exterior region of the 
polytrope.

Because of the way (18) was constructed, we would expect the 
values of 1/e obtained from (20) and (21) to be close to the val-
ues of x2

s computed numerically in [11]. Table 3 shows that these 
values are indeed quite close, particularly for n ≥ 3, when the sin-
gularity moves closer and closer to the origin [note that for n ≥ 5, 
the values of 1/e are obtained by letting x1 → ∞ in (20)]. Thus, 
as a side-product of our approach we have got a good analytic ap-
proximation for the value of xs over the range 1.5 < n ≤ 6.

We finally note that this approach helps us to understand why 
the rational approximations (8) (n = 3) and (13) (n = 2) are so 
good. Since σ = 1 in the former case, the purely rational approxi-
mation (8) may be expected to be accurate if it has a pole in the 
denominator at x2 � −x2

s . This is indeed the case, because

1 + (17/108)x2 + (1/1008)x4

� (1 + 0.15083x2)(1 + 0.00658x2) , (23)

and the first term on the rhs has a pole at −x2 � 6.62998, very 
close to the numerical value x2

s = 6.6298 computed in [11]. In the 
case of (13), we have σ = 2; the denominator does not vanish, but 
becomes very small at x2 � −15.58. In fact, it is quite close to

[1 + (x/15.58)2]2(1 − 0.0139x2) , (24)

which captures well the dominant singular behavior.

4. Conclusions

After recalling some basic results, sometimes forgotten in re-
cent literature, in this work we have focused on the construction 
of rational approximations to the solution of the LEE.

We have clarified merits and limitations of the (2, 2) Padé 
approximant obtained in [6], and showed how to improve upon 
it. We have derived the non-diagonal Padé approximant (9)–(11), 
which, together with the fit (15) for the star radius, yields an accu-
rate approximation for y over the whole radial extent of the star, 
for values of the polytropic index in the range [0, 3.1]. Building 
on the analysis of [11], we have also derived a modified rational 
approximation, meant to capture the dominant singular behavior
near the complex pole of the LEE on the negative x2 axis. The 
resulting approximation (18) has a simple structure, is fully ana-
lytic, and is accurate over a wide range, from about n = 1.5 up 
to n = 4.5. Together, the two approximations cover most of the n
range of interest for star and cluster dynamics. For n > 4.5, (18)
loses accuracy in the external region of the star, but the approx-
imation could be improved by adding a factor (1 + dx2) in the 
denominator, and enforcing one more term in the series expansion 
about the origin.

For n close to 5, one may also use the analytic approximation 
derived in [12]. This approximation was obtained with a pertur-
bation method (remember that the n = 5 case is exactly solvable) 
that is equivalent to the approach used in [8], where the expansion 
was performed around the exact solution of the n = 1 case. Beyond 
n = 5, one can only rely on the approximation derived in [7]. Fur-
ther work will be needed to obtain a simple approximation in this 
range.

Finally, we wish to stress that all the main results on the LEE, 
such as those concerning the dependence of x1 and xs on the poly-
tropic index, have been obtained numerically. Gaining analytic in-
sight about these issues would be of great importance, and would 
likely have broader implications.
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