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a b s t r a c t

Photovoltaic (PV) power production increased drastically in Europe throughout the last years. Since
about the 6% of electricity in Italy comes from PV, an accurate and reliable forecasting of production
would be needed for an efficient management of the power grid. We investigate the possibility to
forecast daily PV electricity production up to ten days without using on-site measurements of
meteorological variables. Our study uses a PV production dataset of 65 Italian sites and it is divided in
two parts: first, an assessment of the predictability of meteorological variables using weather forecasts;
second, an analysis of predicting solar power production through data-driven modelling. We calibrate
Support Vector Machine (SVM) models using available observations and then we apply the same models
on the weather forecasts variables to predict daily PV power production. As expected, cloud cover
variability strongly affects solar power production, we observe that while during summer the forecast
error is under the 10% (slightly lower in south Italy), during winter it is abundantly above the 20%.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Europe is experiencing a growing penetration of photovoltaic
(PV) production, in particular Italy that in 2012 had almost 480 000
PV plants (16.4 GW of total installed power) [6], 44% more than in
2011. Modelling of daily electricity generation of PV power systems
can be useful for an effectivemanagement and balancing of a power
grid, supporting real-time operations especially in countries with a
considerable amount of solar energy potential. Forecasting the
expected PV power production could in fact help to deal with its
intermittency, mainly due to weather conditions. Moreover, short-
term forecasting information can also be valuable for electric
market operators.

PV plant production can be modelled in two ways: with a
mathematical model or through a data-driven approach, the latter
often called black-boxmodelling. A mathematical model consists of
a set of equations describing the physical behaviour of the
photovoltaic module, a good example can be found in Bellini et al.
[2], Sandrolini et al. [16] and Massi Pavan et al. [11]. While this
approach can be considered physics-aware, the data-driven
lice).
approach tries to reproduce the behaviour of the system “just”
modelling the relationship between observed inputs (e.g.
meteorological conditions) and outputs (e.g. power output). Both
the approaches have their pros and cons, the former can be more
accurate but in addition to weather variables (incoming solar
radiation, air temperature, wind speed, etc.) it needs solar panel
characteristics (technology, area, orientation, etc.) and their
evolution during time (e.g. due to degradation). Conversely, the
black-box approach does not require information about the
typology of PV panel but it needs long time-series of input and
output variables to calibrate a reliable model. From a system
identification perspective, the two approaches can be defined
respectively white box and black box model modelling. If we go
beyond this dichotomous point of view, we may consider a tradeoff
between these two approaches, commonly called a “grey box”
model (see the paper by Ljung [9] for an interesting introduction on
system identification modelling). Since the aim of this paper is an
analysis of PV power production forecast without using on-site
measurements, we limit our approach to the black-box modelling
in order to focus on the uncertainty associated to meteorological
data. Furthermore, the black-box choice is also due to the absence
of detailed information about solar panel characteristics and site
location. However, we plan to explore a more complex modelling
approach in a future paper.
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In this work, we use a Support Vector Machine (SVM, briefly
introduced later in Sec. 4) to perform the prediction of daily pro-
duction using both solar radiation and temperature information.

SVMs have been already used for similar applications, Zeng and
Qiao [22] tested a SVM-based approach using data from three
different sites outperforming both autoregressive and neural
network-based models; Bouzerdoum et al. [3] proposed a hybrid
SARIMA-SVM approach which performed better than both the
single models in predicting hourly power output of a small PV
plant; Shi et al. [19] applied a SVM-based approach using weather
forecast data on a PV station in China. More in general, black-box
methods are common for forecasting applications related to solar
power and solar radiation (e.g., see Pedro and Coimbra [14]).

Our work is based on daily power production data of 65 grid-
connected PV systems in Italy. For each plant a SVM model has
been built and tested with the best available observations of solar
radiation and air temperature. Finally, the same SVM models are
used for forecasting power production considering as inputs data
provided by numerical weather forecasts.

In the next section, we introduce and describe weather and
production data that will be used for modelling and forecasting
parts, respectively presented in Sections 4 and 5. For a better
comprehension of the forecasting results, we also analyze the
predictability of solar radiation and temperature provided by
weather forecasts in Sections 3.1 and 3.2. The final section provides
a summary and conclusions.
2. Data

In this work a data-driven approach has been chosen, mainly
due to the unavailability of detailed data about power plants and
local weather measurements. The effectiveness of a data-driven
approach, as the name suggests, strongly relies in the appropri-
ateness and quality of input/output data. Input data are here two
meteorological variables: solar radiation and air temperature, while
the output variable is the electricity production. Solar radiation is
converted into electricity by photovoltaic modules and for this
reason the choice of surface incoming solar radiation as model
input is obvious. Air temperature is also a relevant variable: solar
panels efficiency depends by module temperature. Depending by
the technology used, above a certain threshold (generally about
25 �C) the panel efficiency begins to drop. For an improved
modelling of the module temperature the cooling effect of thewind
also should be taken into account (as described in Schwingshackl
et al. [18]) and its inclusion will be object of future work.
Fig. 1. Surface Solar Radiation statistics for the years 2011e2012 from CM-SAF satellite obser
as the ratio between standard deviation and average. It measures the variability of the solar r
CV > 0.55 above the 45� of latitude) and lower average solar radiation than the Southern p
2.1. Meteorological data

Solar radiation data used in this paper are based on the algo-
rithm described by Mueller et al. [13] and obtained from the Sat-
ellite Application Facility on ClimateMonitoring (CM-SAF) [17], part
of EUMETSAT's SAF Network. Considered variable is the surface
incoming shortwave (SIS) radiation on the Meteosat (MSG) full
disk. In Fig. 1a is visible the average daily solar radiation and its
coefficient of variation (Fig. 1b), i.e. the ratio between standard
deviation and average.

For air temperature, we instead consider the E-OBS gridded
dataset [8], a land-only high-resolution temperature dataset ob-
tained interpolating on a 0.25� regular grid the available meteo-
rological stations (4200 stations at the latest releasemade available
in October 2013).

Weather forecast of solar radiation and temperature data are
provided by the ECMWF Integrated Forecasting System (IFS) which
runs twice per day with a resolution of 16 km.

In Table 1 are summarized all the data sources used in this paper.
2.2. Electricity production data

In this work we consider 65 different PV power plants located in
different Italian regions. We divide the plants in two groups: North
and South. In the first group (North) we have all the PV plants above
the 44� 500 latitude, 34 PV plants with a total of 127MWof installed
capacity. Remaining plants are in the other group (South), 31 PV
plants with a total of 288 MW.

For each plant we have a time-series of daily power production
of variable length, between 18 and 24 months (550e731 daily
samples).
3. Daily predictability of meteorological data

In this section we analyze the capability of the ECMWF nu-
merical weather prediction (NWP) model to forecasts the twomain
predictors for solar power production: solar radiation and air
temperature. Both the meteorological variables are provided by the
ECMWF global forecast model, which data is available on 0.25� grid
up to ten days in advance with a time step of 3 h.

An assessment on the forecasting skills of ECMWFmodel can be
found in Richardson et al. [15]. Other studies on the use of solar
radiation forecasts can be found in Lorenz et al. [10] and Mathiesen
& Kleissl [12].
vations. (a) Annual average of surface solar radiation (b) Coefficient of variation defined
adiation, we can observe as the Northern Europe shows a higher variability (generally a
art of the continent.



Table 1
Summary of weather data sets used in this work.

Observed Forecast

2-m temperature E-OBS (�25 km) ECMWF IFS (�16 km)
Downward solar radiation CM-SAF (�15 km) ECMWF IFS (�16 km)
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3.1. Solar radiation

ECMWF operational deterministic forecasts are issued every day
and it provides hourly estimation of several variables up to ten days.
We use the surface solar radiation downwards variable, i.e. the
incident shortwave radiation accumulated over the day.
Fig. 2. Average spatial correlation for the period 2011e2012 on the entire domain
between operational forecasts and satellite measurements of solar radiation. Shaded
area represents the interquartile range (IQR) for each lead time. We observe an average
decrease of correlation of 2.5% and an increment of IQR of 20% for each lead time.

Fig. 3. Example for a specific day (2/2/2011) of solar radiation forecasts provided by ECMWF
the shown forecasts with the observations are respectively 0.93, 0.90 and 0.67.
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We compare the forecasts with the CM-SAF satellite data for the
years 2011e2012. The two data sets have different resolutions: CM-
SAF data are on a sinusoidal grid of 15 � 15 km while the weather
forecasts are on a Gaussian reduced grid of about 16 km of reso-
lution. To make them comparable, we applied a bilinear interpo-
lation on the satellite data to match the NWP resolution.

In Fig. 2 we observe the spatial correlation between forecasts
and satellite data on the entire domain as a function of the lead
time of forecast. We define spatial correlation the Pearson corre-
lation coefficient computed on the spatial dimensions (instead of
time as it is usually done) and then averaged on all the time steps.
Given two variables Ax,y,t and Bx,y,t where t is the time and x, y the
coordinates on a grid of sizeM� N the spatial correlation is defined
as:
(1)
The two samplemeans Ak and Bk are equivalent to the average of
all the points (i.e. all the pairs x, y) for the time step k.

An example of the forecast data is presented in Fig. 3 where we
show predicted solar radiation of a specific day for three different
lead times: one, five and ten days. Correlating the CM-SAF obser-
vations with the three above mentioned forecasts we obtain
respectively a rs of 0.93 (Fig. 3b), 0.90 (Fig. 3c) and 0.67 (Fig. 3d).

Moreover, solar radiation exhibits a clear seasonal cycle and for
this reason absolute error measures (e.g. RMSE) might not be suf-
ficient to describe the performance of themodels used in predicting
it. For example, a RMSE of 20 W/m2 can be a small fraction of the
operational forecasts with one, five and ten days of lead time. The spatial correlations of



M. De Felice et al. / Renewable Energy 80 (2015) 197e204200
total incoming solar radiation in Summer but a relevant portion in
Winter. For this reason, for a complete and meaningful description
we use two different error measures: an absolute and a percentage
one.

As absolute error measure we select the RMSE (Root Mean
Square Error), defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt¼n

t¼1 ðbyt � ytÞ2
n

s
(2)

where yt is the observed value and byt the estimation at time t.
As a percentage error measure, we choose the Median Absolute

Percentage Error (MdAPE) defined as:

MdAPE ¼ medianðj100ðbyt � ytÞ=yt jÞ (3)

We preferred this error measure over the more common MAPE
(Mean Absolute Percentage Error) because the former is less sen-
sitive to outliers (see Armstrong & Collopy [1] for an interesting
discussion on error measures).

Fig. 4 illustrates the MdAPE and the RMSE of the predicted solar
radiation with respect to the latitude for three lead times (1, 5, 10
days, the other lead times have been omitted for sake of clarity).
Looking at the RMSE (bottom part of the figure), the difference
among the three lead times is more evident, with the prediction
with one day of lead time having an error nearly constant at all the
latitudes. Obviously, given that the average solar radiation is lower
at higher latitudes (see Fig. 1a), the percentage error shows a
steeper trend correspondingly. However, it is evident how the
prediction error is related to the lead time, with one day the
average MdAPE on the entire domain (30e50� latitude) is 8.25%,
with five days is 11.59% and at ten days is 17.04%. Respectively, the
average RMSE is instead 29.19W/m2, 43.62 W/m2 and 58.06W/m2.

The decrease of the forecast performance at high latitudes is due
to the higher weather variability, as can be also depicted in Fig. 1b.
Fig. 4. Error (MdAPE upper panel, RMSE lower panel) on solar radiation forecast
versus latitude over Europe with selected lead times (one, five, and ten days). Shaded
area represents the interquartile range (IQR). The range 30�e35� is related to the North
Africa and East Mediterranean where the solar radiation variability is low, in this case
in fact the errors for the three lead times are close to each other. Instead the range 40�

and 45� includes the majority of the European mountain areas (Alps, Pyrenees, Car-
pathians, Balkans), in fact we observe an large forecast error variability (i.e. high IQR).
According to the North/South classification proposed in Section
2.2, Fig. 5 shows the density plot of solar radiation provided by CM-
SAF and by the forecast at one, five and ten days of lead time.
Looking at the density plot for the North Italy (Fig. 5a), we can
quickly see the difference among the three lead times in describing
the two peaks, especially for the minor one. Observing the density
comparison for the South Italy (Fig. 5b) we instead see how the
three lead times show a similar distribution. It can be also seen that
for the South Italy the forecasts tend to underestimate the highest
peak.

3.2. Air temperature

As for the downwards solar radiation, we analyze the predict-
ability of air temperature provided by ECWMF deterministic fore-
casts by comparing it with the observations. As stated in Section 2.1,
we used as observation the E-OBS dataset for the years 2011e2012.
In order to have both the data sets with the same spatial grid, we
applied the same interpolation procedure described in Section 4.

Fig. 6 shows descriptive statistics of observed temperature over
Italy. The coefficient of variation (Fig. 6b) clearly follows Italian
orography, with the higher variability of temperature mostly in the
mountain areas. The density plot of observed and predicted tem-
perature (Fig. 7) shows a higher correspondence of forecasts with
respect to the similar plot for solar radiation in Fig. 5.

4. Modelling PV production using satellite data

To perform a forecast of the solar power production we first
need to find an accurate relationship between daily meteorological
variables (here solar radiation and temperature) and power
Fig. 5. Comparison of Gaussian kernel density estimation of the observed solar radi-
ation with the predictions at three lead times (one, five and ten days). We can see that
the weather forecasts tend to overestimate the “winter” (left one) peak in the North of
Italy and to underestimate the “summer” peak (right one) in the South part. A cosine
kernel has been used and the bandwidth has been selected using the Silverman rule of
thumb [20] adjusted with a factor 1.5.



Fig. 6. Air Temperature statistics for the years 2011e2012 from E-OBS dataset. Both the statistics highlight clearly the Italian coastal areas (higher average temperature and lower
variability) and the mountain areas (Alps and Apennines with lower temperature and higher variability).

M. De Felice et al. / Renewable Energy 80 (2015) 197e204 201
production. We need to find a set of functions fi (one for each PV
plant) with the following form:

by ¼ fiðSSR; TÞ (4)

with by the predicted power output, SSR and T respectively the
surface solar radiation and the air temperature available for the i-th
PV plant. These functions aims to model the relationship between
the meteorological variables and the electricity produced, trying to
minimize the error between observed and estimated values. A
black-box approach will focus at the same time on the minimiza-
tion of the modelling error and on the maximization of the
generalization, i.e. the capability of giving consistent outputs with
Fig. 7. Comparison of kernel density estimation of the observed temperature with the
predictions at three lead times (one, five and ten days). A cosine kernel has been used
and the bandwidth has been selected using the Silverman rule of thumb [20] adjusted
with a factor 1.5.
new observed inputs. Given the absence of on-site measurements,
here we consider as inputs the bilinear interpolation among the
four nearest grid points of solar radiation and temperature data.

Although the photovoltaic process is non-linear, it is a good
practice to start with the simplest model for the f function, a linear
regression model with the following form:

by ¼ a1SSR þ a2Tþ a3 (5)

Minimizing the error through Ordinary Least Squares, we obtain
an average MdAPE of 12.4% on cross-validation on all the PV plants.
A k-fold (with k ¼ 10) cross-validation procedure here is used: as
first step we divide the available dataset in k subsamples of equal
size, and then for k times the chosenmodel is calibrated using k� 1
subsets and then tested on the remaining one. At the end of the k
steps, the cross-validation error is given as the average of all the k
obtained errors.

Here the average parameters with the associated standard de-
viation of the 65 linear models: a1 ¼ 0.13 ± 0.28, a2 ¼ �0.22 ± 0.40,
a3 ¼ 5.12 ± 9.50.

In order to take into account the non-linearity of the PV physical
processes, we use a Support Vector Machine (SVM), a well-
established non-linear approach.

SVMs were developed by Cortes & Vapnik [4,21] for binary
classification and then extended to regression problems (Support
Vector Regression). The idea behind the support vector-based
methods is to use a non-linear mapping F (kernel function) to
project the data into a higher dimensional space where solving the
classification/regression task is easier than in the original space.

In our case, we use a Support Vector Regression method called
ε-SVR [5], which tries to find a function f ðxÞ ¼ 〈w;FðxÞ〉þ b that has
at most ε deviation from the target values. The input vector x is
mappedwith a non-linear function into a higher dimensional space
where the regression is performed. The kernel function here used is
a Gaussian kernel Kðu; vÞ ¼ expð�g

������u� v
������2Þ. There are several

possible kernel functions (the functions need to satisfy theMercer's
theorem, see the book by Haykin [7] for an in-depth description of
the SVM theory) but their optimal choice is generally problem-
dependent. We selected the Gaussian kernel among other com-
mon typologies (e.g. linear, sigmoid) after some preliminary tests.

A ε-SVR model has three parameters: the regularization
parameter C, the ε value, and the width of the kernel g. The
parameter C can be considered the tradeoff between the model
complexity and the empirical risk (i.e. the average loss of the esti-
mator): a large value of C implies that the model designer has high



Fig. 8. Cross-validation modelling errors for SVM using observed meteorological variables (satellite solar radiation and E-OBS temperature). Error bars represent the interquartile
range (IQR). Looking at the percentage error, the proposed model is able to model the power production better in the South Italy than in the North, due to the lower weather
variability, except during Spring. The normalized RMSE is instead influenced by the larger errors that can happen in the South of Italy because of the larger average solar radiation
(see Fig. 1a).
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confidence in the quality of the training data, on the other hand a
small value is needed when the available data is noisy (e.g. to avoid
overfitting). The ε parameter represents instead the “width” of the
ε-insensitive zone, in the ε-SVR approach the loss function is
different from zero only when the error is larger than ε, in other
words this parameter denotes how much error you are willing to
allow per each training data sample. Finally, the g parameter is the
width of the Gaussian kernel as described before.

For each PV plant we choose the optimal parameters of the SVR
model applying a grid search among 75 combinations of
C2½10�2;102�, ε2½10�2;1�) and g2½2�2;22�. After the parameters'
selection, as for the linear models, we compute the cross-validation
error. We obtain an average MdAPE of 7.6%, about the 40% lower
than in the linear case. This improvement was already expected,
given the highest modelling power due to the inherent non-
linearity of SVR with respect to linear regression.

Aggregating the PV plants by North and South (see Sec. 2.2) we
obtain the modelling errors (both the MdAPE and the RMSE)
divided by season (see Fig. 8). We observe how the percentage error
is lowest during summer for entire Italy, and, except for spring, we
get for South Italy lower errors at all the seasons. On the other hand,
on the right (Fig. 8b) we see that the normalized RMSE (i.e. RMSE
divided by the maximum PV plant power output) is lowest during
winter, which is the period with the lowest incoming radiation and
thus PV production during the entire year.
Fig. 9. PV power production forecast for SVM using predicted meteorological data. Shade
between observed and predicted power production are shown for each lead time of the w
5. Short-term forecast of solar power production

In this section we assess the forecasting skill using the SVM
models created in the previous section and driven by NWP vari-
ables instead of observations.

As summarized in Table 1 and explained in Section 2.1, we use
the meteorological data coming from the ECMWF operational
forecasts. Following the same approach of the modelling part, for
each PV plant we apply bilinear interpolation of the nearest four
grid points as input variables for each PV plant.

For each day of lead time Fig. 9a shows the MdAPE error of the
power production. Similarly, Fig. 9b depicts the correlation be-
tween predicted and observed output. The minimum error is with
one day of lead time (10�12%) and it grows steadily up to 15�20%
with ten days of lead time. In all the cases the prediction of the PV
plants in South of Italy is more accurate than in the North. We
observe that the interquartile range also increases with the lead
time, highlighting the higher uncertainty due to the weather
forecasts at increasing lead times. Looking at the correlation, one
day of lead time for both the cases is in the range 0.7�0.8 while at
ten days it drastically decreases below 0.1.

The error analysis can be improved grouping the errors by
season, as in Fig. 10 where we display both the MdAPE and the
normalized RMSE (i.e. the RMSE divided by the maximum PV
power output). In this figure is evident the different magnitude of
d area represents interquartile range (IQR). The percentage error and the correlation
eather forecasts.



Fig. 11. Comparison of SVM estimation of the normalized solar power production with
the predictions at three lead times (one, five and ten days). The SVM model tends to
underestimate the power production in both the geographical domains and basically
the power distributions of the three lead times are hardly distinguishable. A cosine
kernel has been used and the bandwidth has been selected using the Silverman rule of
thumb [20] adjusted with a factor 1.5.

Fig. 10. Prediction error (median percentage absolute error and normalized RMSE) for SVM using forecasted weather data by season. Shaded area represents interquartile range
(IQR). The evident error differences among the seasons (especially between summer and the other season) is due to the weather variability and then to the capability of the weather
forecast models to predict effectively the meteorological predictors used as inputs for the SVM.
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errors between summer, where it is common to have clear sky in
most of the country, and winter, when the MdAPE is about the
50%. Observing the normalized RMSE, the difference between
North and South is less pronounced except for summer, where the
two error curves are well distinguishable. It is worth remembering
that the average incoming solar radiation (see Fig. 1a) is different
between North (125e175 W/m2) and South (175e225 W/m2) of
Italy, this means that the same absolute error can lead to different
percentage errors as it has been discussed before and it is shown
in Fig. 10.

Finally, Fig.11 highlights how in both cases, North and South, the
prediction densities of the three lead times are similar, indicating a
general tendency to underestimate high yields.
6. Conclusions

In this paper, we have shown an assessment about the short-
term predictability of photovoltaic daily power production over
Italy without the use of meteorological on-site PV plant measure-
ments. We have performed a detailed analysis of the accuracy of
solar radiation and temperature predicted by NWP models to
evaluate the associated uncertainty.

Through Support Vector Machine methodology, we have ana-
lysed themodelling error of power production using solar radiation
from satellite as well as temperature observations from weather
stations. Then, with NWP forecasts as inputs on the same models,
we have compared the prediction error for lead times between one
and ten days.

The results can be outlined as follows:



Fig. 12. Prediction errors (median percentage absolute error). Left panel: error for power production with SVM using predicted meteorological data. Center: error between observed
solar radiation and NWP prediction. Right: error between observed temperature and NWP prediction. Shaded area represents interquartile range (IQR).
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1. Given the absence of meteorological measurements on PV
plants, we have used remote sensing and ground-based data
obtaining an average cross-validation percentage error (MdAPE)
of 12.4% using a linear model and 7.6% a SVM on the interpolated
PV plant location.

2. Solar power production obtained by SVMmodelling on Italywas
found to bemore accurate during summer than in the rest of the
year: the percentage error is below the 5% when we use
observed meteorological data as predictors and below the 12%
when we use forecasted predictors on the entire prediction
range. The normalized RMSE is below 0.08 and 0.18 respectively.

3. The prediction results for the PV plants in the South Italy were
comfortably better than those in the North, mainly due to the
lower weather variability in the southern part of the country.

Uncertainty due to the absence of information related to local
phenomena (e.g. orography, shading effects, etc.) becomes certainly
critical in predicting PV power production, especially for the higher
lead times.

We have analysed the nature of our results' uncertainty and it
can be seen as the combination of three concurrent sources: (i)
Modelling limitations of the SVM methodology (ii) Errors in the
observations used to calibrate the models (iii) Weather forecast
accuracy (as discussed in Sections 3.1 and 3.2).

The error propagation of the NWP forecasts on the solar power
production can be estimated observing the differences between the
modelling (Fig. 8) and prediction (Figs. 9 and 10) errors.

Concluding, Fig. 12 summarizes this uncertainty propagation
showing the relationship between the PV production error (the
same as in Fig. 9a) and the forecast error of the used meteorological
predictors (solar radiation and temperature).

These results demonstrate on the one side the potentiality in
using black-box approach in spite of the absence of on-site mea-
surements; on the other side, the crucial importance of estimating
the magnitude and the nature of uncertainties in forecasting elec-
tricity production.

Finally, we believe that an in-deep analysis of the uncertainty is
the key factor for a reliable management of renewable and con-
ventional sources in power grids.
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