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I. Introduction

Load Forecasting plays 
a critical role in the 
management, sched-

uling and dispatching opera-
tions in power systems, and it 
concerns the prediction of 
energy demand in different 
time spans. In future electric 
grids, to achieve a greater 
control and flexibility than in 
actual electric grids, a reliable 
forecasting of load demand 
could help to avoid dispatch 
problems given by unexpect-
ed loads, and give vital infor-
mation to make decisions on 
energy generation and pur-
chase, especially market-based dynamic 
pricing strategies. Furthermore, accurate 
prediction would have a significant 
impact on operation management, e.g. 
preventing overloading and allowing an 
efficient energy storage. In fact, in an 
environment where the fluctuations 
may depend from a big number of fac-
tors (and where some of them are 
unknown or hardly predictable), fore-
casting the demand using all the infor-
mation provided by meter ing and 
sensing technologies is vital in order to 
have an effective management of peak 
demands (load shifting). 

The ability to predict future behav-
iors and energy demand is part of the 
intelligence needed by Smart Grids, 
where information technology is 

 strongly applied, and, more in general, 
future distribution networks (see EU 
ADDRESS project [1]). An intensive 
use of Distributed Generation raises 
new challenges, such as the need of a 
‘distributed intelligence’ in order to deal 
with data originated in diverse places 
and to perform effective choices in a 
dynamic environment. An example of 
this new scenario is presented in Vale 
et al. [2] where various optimization 
heuristics are applied to economic dis-
patch problem in Smart Grids. 

An investigation in such a complex 
scenario might start in small-scale, 
focusing on buildings, studying the per-
formances of well-established forecast-

ing techniques and allowing 
an extension of the results to 
larger and more complex 
scenarios. In this work, we 
present an application of lin-
ear and non-linear models to 
the problem of Short-Term 
Load Forecasting (STLF) 
using real data from seven 
office buildings. 

Most forecasting methods 
use statistical approaches or 
artificial intelligence algo-
rithms. The most applied 
methods are Box-Jenkins 
approaches, exponential and 
Holt-Winters methods, Neu-
ral Networks (NN) based 

methods and, more recently, Support Vec-
tor Machines [3]. An introduction to time 
series applications can be found in Brock-
well and Davis [4] and a good survey on 
various methodologies for load forecast-
ing is in Feinberg and Genethliou [5]. 

Neural Networks have been applied 
successfully to a wide variety of real-
world applications, as well to forecasting 
in several engineering fields. Neural net-
works demonstrated their ability to 
extract and learn the relationships 
between observed variables, leading to 
excellent results also in STLF [6]. 

This paper analyses their applications 
to this particular short-term load forecast-
ing problem, showing the effectiveness of 
combining a high number of networks 
together in an ensemble. The term 
‘ensemble’ describes a group of learning 
machines that work together on the same 
task, in the case of neural networks they 
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are trained on the same data, run together 
and their outputs are combined as a single 
one [7]. In this work, we apply this meth-
odology to the forecasting with the aim 
of obtaining a reliable prediction. 

This paper is organized as following: 
in Section II we define the STLF prob-
lem discussing its relationship with Smart 
Grids and then we describe the real-data 
used in this paper. A description of fore-
casting model is given in Sections III and 
IV. Section V briefly introduces neural 
network ensembles. Experimentations are 
described in Section VI and the results 
presented are discussed in Section VII. 
Finally, Section VIII concludes this paper. 

II. Short-Term Load Forecasting
Prediction of the system load over an 
interval usually from one hour to one 
week is known as short-term load fore-
casting (STLF), an important procedure 
in real-time energy management. 

Predicting the energy demand 
allows an optimal allocation of power, 
trying to keep the ratio between overall 
costs and system efficiency as low as 
possible. This process is also critical for 
peak shaping and demand response 
(DR). In fact, an accurate forecasting is 
an important factor in order to have a 
fast response predicting demand fluctu-
ations and managing energy storages in 
an optimal way. Demand Response is a 
mechanism used to control the peak 
demand, giving the customer feedback 

about the status of the electricity grid 
and market prices in order to reduce 
(or postpone) his electricity consump-
tion. An accurate load forecasting 
allows the customer to plan his activities 
to consume electricity when the electric-
ity costs are lower, and it also allows the 
operators to manage the grid to achieve 
better efficiency and lower costs. 

Load forecasting may be included 
into all the operations performed by 
Energy Management System (EMS) in 
order to manage electricity supplies 
more effectively with the distribution 
company. Furthermore, a load forecast-
ing is still more critical where the 
dependence from weather-depending 
renewable generation is particularly 
pronounced (micro-grids). 

For this kind of problem, various fac-
tors should be considered, such as 
weather data or, more in general, all the 
factors influencing the load/consump-
tion pattern. This means that for an 
accurate load forecasting, exogenous 
variables may be considered and they 
differ according to customer type: resi-
dential, commercial and industrial. 

Load data usually exhibits seasonality, 
sometimes showing more than one 
periodicity: in fact the load at a given 
moment may be dependent on the load 
on the previous hour and also on the 
previous day and so on. 

Forecasting effectiveness can be mea-
sured by its accuracy (the difference 

between predicted and real value) but also 
the maximum error achieved (error peak) 
is a critical factor. In fact, the effectiveness 
of the energy management of a Smart 
Grid may be strongly affected by the 
error peaks and a predictor with low 
variance might be preferred to a predictor 
with a better average error but with high-
er error peaks. Underestimating the ener-
gy demand may have a negative impact 
on the Demand Response and it makes 
the control of overload conditions harder, 
especially where energy storage is absent 
or under-sized. On the other hand, an 
overestimation may create an unexpected 
surplus of production. In both cases, the 
higher the estimation error, the higher 
the managing costs involved, e.g. an ener-
gy district could be forced to buy energy 
from the grid at higher costs than it 
would have in case of a better prediction. 

A. Real Data
Data used in this work has been collect-
ed from seven office buildings, all 
 located in a new industrial area in 
Rome, Italy. Although there were many 
various available signals, our work is 
focused on the following data: 
1) Electricity hourly overall load data: 

it takes into account lighting, air 
conditioning/heating and appliances. 

2) Water consumption: hot water con-
sumed by people working into the 
buildings 

3) Luminosity: data collected from a 
solarimeter
All the data has been collected for 

the entire 2010 but for this work, we 
decided to focus on the period starting 
from 1/1/2010 to 1/4/2010, for a total 
of 2160 hourly samples. 

In Table 1(a), building characteristics 
are shown, all the buildings considered 
have a gas heating system and a water-
cooled air conditioning system. More-
over, in Table 1(b), we provide statistical 
properties of involved data sets. 

In Figure 1, for each building, data 
for the entire available data signal and 
the partial autocorrelation function 
(PACF) is plotted. As expected, load data 
presents an evident daily and weekly 
periodicity as it is shown by PACF plots 
in Figure 1. 

TABLE 1 Problem information.

(A) BUILDING CHARACTERISTICS

BUILDING SURFACE (M2) VOLUME (M3) NUMBER OF PEOPLE

A 4968 13414 380
B 5024 13565 290
C 4960 13392 210
D 4968 13414 360
E 6688 18000 410
F 4960 13392 440
G 3360 9072 300

(B) STATISTICAL INFORMATION ABOUT DATA SETS (MEASURE UNIT IS kW) 
BUILDING DATA MIN. 1ST QUARTILE MEAN 3RD QUARTILE MAX

A 24.2 29 41.8 57 83
B 22.6 25 38.96 58.05 73.8
C 26.8 31.8 41.52 53.8 71.6
D 23.04 29.28 45.15 64.68 91.68
E 33.4 40.4 52.61 66.25 93.4
F 29.8 41.2 4663 50.80 72.4
G 94.2 109.6 121.7 137.4 184.8
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FIGURE 1 Building loads and Partial Autocorrelation Functions (PACF). In PACF plots, light gray points are the points within the 95% confidence 
bounds. (a)Building A, (b) PACF A, (c) Building B, (d) PACF B, (e) Building C, (f) PACF C, (g) Building D, (h) PACF D, (i) Building E, (j) PACF E, (k) 
Building F, (l) PACF F, (m) Building G, and (n) PACF G. 



50    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2011

III. Forecasting Models
In this section, we provide a brief 
description of the models involved in 
this work. 

A. Naive Model
In order to perform a meaningful com-
parison for the forecasting, a naive 
model should be introduced in order to 
quantify the improvement given by 
more intelligent and complex forecast-
ing techniques. For seasonal data, a naive 
model might be defined as: 

 xt5 xt2S (1)

with S as the appropriate seasonality peri-
od. This model gives a prediction at time 
t presenting the value observed exactly a 
period of S steps before. For this work, 
after the considerations of the previous 
section, we put the value of S5 168 
which corresponds to a week given that 
the data considered is hourly data. 

B. Box-Jenkins Models
A time series model is certainly consid-
ered the first choice in approaching a 
forecasting problem, especially the autore-
gressive integrated moving average model 
(ARIMA), which considers the nonsta-
tionarity of the data, presented in the 
landmark work of Box and Jenkins [8]. In 
this model, future value of a signal is 
assumed to be a linear function of past 
observations with the addition of an error 
term (assumed with zero mean and indi-
pendently and identically distributed). 

Given the seasonality of the used 
data (as described in section II.A) the 
seasonal variant of the ARIMA models, 
called SARIMA, has been chosen. 
SARIMA models has been normally 
used for forecasting in various applica-
tion fields (e.g. [9,10]). 

Once introduced the backshift and 
the first difference operators as: 

 Bkxt5 xt2k (2)

 =nxt5 112 B 2 nxt (3)

 =s
Nxt5 112 Bs 2Nxt (4)

a seasonal ARIMA model denoted as 
ARIMA 1p, d, q 2 3 1P, D, Q 2 s has the 
following form: 

FP 1Bs 2f 1B 2=s
D=dxt5  

 a1UQ 1Bs 2u 1B 2et, (5)

where xt is the value of the signal at 
time t and et the error term (supposed 
to be a white noise process). The 
terms d and D represent the degree of 
differencing and the operators FP 1Bs 2  
and UQ 1Bs 2  are respectively the sea-
sonal autoregressive and the seasonal 
moving average operators of orders P 
and Q as: 

 FP 1Bs 2 5 12F1B
s2F2B

2s

 2 c2FPB
Ps (6)

 UQ 1Bs 2 5 12U1B
s2U2B

2s

 2 c2UQBQs. (7)

The non-seasonal operators f 1B 2  and 
u 1B 2  are similar to the seasonal ones 
(eqs. 6 and 7) assuming s5 1. 

The ARIMA model can be extend-
ed adding exogenous inputs I, such a 
model is called ARIMAX, the same the 
SARIMA model becomes a SARI-
MAX model. Thus, the equation 5 
becomes: 

 FP 1Bs 2w 1B 2=s
D=dxt5

 GIt1a1UQ 1Bs 2u 1B 2et. (8)

In this paper, the selection process 
for the values of p, d, q, P, D and Q 
has been performed with the method 
proposed by Hyndman and Khanda-
kar [11], implemented with R soft-
ware [12], which explores the model 
space selecting the best model via 
AIC (Akaike Information Criterion) 
measure. 

The model obtained and used in this 
work has the following order s: 
p5 2, d5 1, q51, P51, D51, Q5 1. 

Var ious  implementa t ions  o f 
ARIMA/ARIMAX models for STLF 
has been described in literature, see Cho 
et al. [13], Fan and McDonald [14], and 
the review by Hagan and Behr [15]. 

IV. STLF and Neural Networks
The first applications of NNs to STLF 
were in the 1990s [16,17] and since 
then many different applications of NNs 
to load forecasting were presented. 

From the previous models, which 
linearity can represent a strong limit for 
complex real-world problems, Neural 
Networks are non-linear modelling 
tools designed to find the best input-
output mapping of data observed during 
the so-called ‘training’ phase. Most 
widely used are feed-forward neural 
networks such as multilayer perceptrons 
(MLPs) and Radial Basis Function Net-
works (RBFNs), with the weights train-
ing usually performed with gradient 
descent algorithms. 

The simplest NN-based prediction 
structure we can consider for the fore-
casting is the one which takes in input 
the lagged samples of the output as: 

 xt5 f 1xt21, c, xt2N, w 2 1 et. (9)

This kind of model is sometimes called 
Nonlinear Autoregressive Model (NAR) 
[18] and, differently from ARIMA mod-
els presented in Section III.B, it depends 
also from neural network parameters 
like weights (w). 

Similarly we can use external (exog-
enous) information I available at time t 
to make the prediction of xt and thus 
the previous model becomes: 

 xt5 f 1xt21, c, xt2N, It, w 2 1 et. (10)

The number of inputs nodes, i.e. the 
number of lags, is a critical variable for 
the forecasting application. In fact, a 
low number may not provide enough 
information for an accurate forecasting 
and too high number could make the 
training less effective, due to a larger 
and more complex solution space. After 
a set of preliminary tests where we test-
ed several inputs lags combinations, we 

The ability to predict future behaviors and energy 
demand is part of the intelligence needed by 
Smart Grids.



AUGUST 2011 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE    51

selected the lags L corresponding to the 
previous 24 hours plus one-week and 
two-week s  l a g s , t hu s  h av ing 
L5 31, 2, c, 24, 168, 336 4  ( t h i s 
choice is also based on the analysis of 
PACF function presented in Figure 1). 
The neural network model is the fol-
lowing: 

xt5 f 1xt21, c, xt224, xt2168, xt2332,w 2
  1 et. (11)

As in Eq. 10, the neural network model 
with external data is obtained adding to 
the previous the information I at time t. 

The choice of the number of hid-
den layers used and the nodes included 
into each of them is usually made fol-
lowing some rule of thumb [19, 20]. 
Another factor that may affect perfor-
mance of neural network for time 
series forecasting is the number of out-
put neurons. If we want to forecast at 
time t1 1 starting from time t (fore-
casting horizon of one period), then 
the number of output neurons is obvi-
ously one. When the forecasting hori-
zon is greater than one, the number of 
output neurons varies according to the 
approach being used. The ‘direct’ fore-
cast method has the number of output 
neurons equals to the forecast hori-
zon, i.e. the network outputs are 
xt11, xt12, c, xt1k.  On the other 
hand, if the ‘iterative’ forecast method is 
adopted, the number of output neurons 
is equal to one: the predicted value xt11 
is used as an input for the successive 
period prediction, until the end of the 
forecast horizon. This way of forecast-
ing is the same approach that is used in 
Box-Jenkins models. 

In our work, we chose RBFNs 
because of their easiness of implemen-
tation and training, and their well-
established use for classification and 
forecasting purposes (e.g. see [21, 22]). 

In the RBFN design phase, after a 
set of preliminary tests, we have chosen 
the value of 64 Gaussian basis functions 
into the hidden layer. Given that 
RBFNs radial-basis functions are locat-
ed into the input space, in our imple-
mentation their coordinates are 
initialized randomly selecting input 
vectors. Then a scaled-conjugate gradi-

ent (SCG) algorithm is applied for the 
optimisation of weights and function 
coordinates. The value of RBF func-
tions used usually represents a trade-off 
between neural network performances 
and computational time needed for the 
training algorithm. In fact, in our case 
the algorithm involved the calculation 
of Hessian matrix and its eigendecom-
position, both having an exponential 
scaling runtime with respect to the 
number of weights (see [23] for more 
details). 

V. Neural Network Ensembles
A neural network ensemble is a combi-
nation of a set of NNs which tries to 
cope with a problem in a robust and 
efficient way [24]. The simplest way we 
have to combine M neural networks for 
a regression problem is an arithmetic 
mean of their outputs (yi): 

 ŷens 1xk 2 5 1
Ma

M

i51
ŷi 1xk 2 . (12)

Negative Correlation Learning 
(NCL) has been introduced by Liu and 
Yao [25] with the aim of negatively 
correlate the error of each network 
within the ensemble. In this method, 
instead of training each network sepa-
rately, a penalty term is introduced to 
minimize the correlation between the 
error of the network with the errors of 
the rest of the ensemble. 

The ensembling method we consid-
ered in this work is called Regularized 
Negative Correlation Learning (RNCL) 
and has been proposed by Chen and Yao 
in [23]. This method improves NCL 
adding a regularization term with the 
objective of reduce the overfitting prob-
lem. Regularization helps the network 
to improve its generalization capability, 
penalizing large weights which may lead 
to rough outputs. 

In RNCL ensembles, each network i 
has the following error function: 

 ei5
1
M

 a
N

k51

1 ŷi 1xk 2 2 y 1k 22 2
 2

1
M

 a
N

k51

1 ŷi 1xk 2 2 ŷens 1xk 22 2
 1aiwi

Twi. (13)

The first term is clearly the error of 
the i-th neural network, the second the 
correlation between each network and 
the output of the ensemble (see Eq. 12) 
and finally the last term is the regular-
ization term with its parameter 
a [ 30, 1 4. 
VI. Experimental Studies
In this section, we evaluate the 
RNCL neural networks ensembles 
on buildings data, finally comparing 
it with the SARIMA model. In the 
first part, we examine the perfor-
mance of the ensemble of 20 RBFNs 
with respect the single performance 
of each network, then we compare 
both with a SARIMA model. Finally, 
we would like to show how the 
methodologies proposed are able to 
exploit information contained into 
additional data. 

In our experiments, we considered 
the following iterative forecasting meth-
odology: 
1) We train a model (RNCL ensemble 

or SARIMA model) on a part of 
the dataset (training set) 

2) We test the model on the remain-
ing part of the data set (testing 
part), starting from time t1 k, with 
k [ 31, N 4, and predicting up to 
24 hours ahead 1 t1 1, c, t1 24 2  

3) We repeat step 2. for each value of k
It’s important to note that the pre-

dicted load is used as ‘past’ data from 
the model (see sections III and IV), i.e. 

Prediction of the system load over an interval usually 
from one hour to one week is known as short-term load 
forecasting (STLF), an important procedure in realtime 
energy management.
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the error propagates into the future. 
The proposed methodology can be 
easily turned into a continuous learn-
ing methodology. In fact at step 2, 
instead of using the model created dur-
ing the previous step (i.e. on the train-
ing part) we may update the model 
with a selected strategy. 

The training part considered is the 
data between the 1/1/2010 and 
19/3/2010 (1848 hourly samples), the 
remaining part (until 1/4/2010) has 
been assigned to the testing set 
(312 hourly samples). 

For this work, we considered three 
different error measures. Two of them 
refers to absolute error, the first one is 
the Mean Absolute Error (MAE) which 
the following formula: 

 MAE 1y 2 5 1
Na

N

i51
|yi2 ŷi| (14)

and the second one is the common 
Mean Squared Error (MSE) defined as: 

 MSE 1y 2 5 1
Na

N

i51

1yi2 ŷi 2 2. (15)

Then the other measure is the Mean 
Absolute Percentage Error (MAPE) 
defined as: 

MAPE 1y 2 5 100 # 1
Na

N

i51
|
yi2 ŷi

yi
|.

 (16)

Both absolute and percentage error 
measures are important for this work: 
the former is fundamental to evaluate 
the practical utilisation of presented 
techniques, the latter allows to compare 
the methodologies on buildings with 
different scale of values. 

At the end, we have the forecasting 
testing error matrix (ET) which contains 
all the 24-hours forecasting errors 
e 1k 2 5 y 1k 2 2 ŷ 1k 2 :
ET5  

 ≥ e 1k 2 e 1k112 c e 1k1242
e 1k112 e 1k12 2 c e 1k125 2
( ( ( (

e 1k1i 2 e 1k1i112 ce 1k1 i124 2¥ .

 (17)

All the error measures shown in this 
section are computed on the entire 
matrix ET. 

As already stated in section IV, NNs 
weights are usually initialized with uni-
form random numbers and training 
algorithms are normally strongly affect-
ed by starting conditions. For this rea-
son, NNs trained with the same 
algorithm tend to exhibit a large variety 
of errors, this variability is summarized 
in Table 2 where average errors with 

TABLE 2 RBFN errors on testing part with standard deviations. 
All the values are rounded to two decimals. 

BUILDING MAE MSE MAPE

AVG. STD. RNCL AVG. STD. RNCL AVG. STD. RNCL 

A 6.84 1.75 5.57 81.73 35.63 46.63 19.02 5.83 16.21 

B 5.79 2.60 3.83 65.09 52.59 25.98 18.27 9.49 12.84 

C 5.31 1.38 4.04 49.25 21.80 25.84 14.82 4.09 11.86 

D 7.82 2.31 6.03 106.24 54.93 50.92 21.88 7.67 17.49 

E 2.99 0.69 2.33 16.21 8.07 9.79 5.69 1.60 4.26 

F 4.11 0.11 3.98 39.86 1.95 38.05 8.76 0.26 8.48 

G 3.85 0.44 3.12 28.51 8.86 16.56 3.16 0.36 2.55 

TABLE 3 Ratio of the testing error of the best/worst neural network 
to its respective ensemble (ratioBEST/ratioWORST).

A B C D E F G 

ratioBEST (MAE) 0.67 0.78 0.74 0.64 0.97 0.99 1.03 

ratioBEST (MAPE) 0.59 0.65 0.62 0.51 0.99 0.99 1.04 

ratioWORST (MAE) 1.94 3.36 2.06 2.13 2.24 1.08 1.50 

ratioWORST (MAE) 2.02 3.48 1.85 2.25 2.61 1.09 1.52 
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FIGURE 2 Portion of the 12-hours ahead forecasting obtained by each single RBFN (light gray) and the whole ensemble (black line) compared 
with the target signal (black dots). (a) Building D and (b) Building G.
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standard deviations of the testing errors 
of RBFNs are provided. For each error 
measure, we added a column showing 
the value of the RNCL ensemble. 

We can see how the performances 
of neural networks are evidently prob-
lem-dependent, in the buildings con-
sidered in this work, we can observe a 
percentage error very low (2.55%) for 
building G and on the other hand, par-
ticularly high for building D (17.49%). 
It’s worth nothing that in the first case 
we observe a low standard deviation, in 
f act the RBFNs show a MAPE 
between 2.66% and 3.89%, so the 
RNCL ensemble gives a performance 
better than the best network within the 
ensemble, on the other hand, in build-
ing D the error is between 8.96% and 
39.27%, with the ensemble showing an 
error twice higher than the best net-
work. We summarize this ratio between 
the error made by the best network 
and its ensemble in Table 3, where we 
can evaluate the importance of neural 
network ensembles on dealing with the 
variability of neural networks perfor-
mance: it seems obvious that using an 
ensemble you can improve the results 
obtained by the worst NN among a 
large number (in this case 20) but it 
may be surprising to see that it allows 
(like in building G) to improve the 
results of the best NN. 

To give a visual example of the esti-
mation provided by the ensemble with 
respect to each RBFN composing it, 
see Figure 2 where an example of 
12-hours ahead forecasting is provided. 
It is clearly evident how during the 
weekends (right part of the shown sig-
nal), neural networks have not enough 
information to give an accurate forecast 
and in fact their output becomes 
extremely ‘noisy’ and inaccurate. 

In Table 4 the comparison, focused 
on MSE and MAPE error, with naive 
and SARIMA model is provided. We 
can observe that in the first four build-
ings (A-B-C-D) the RNCL ensemble 
shows a drastic higher error than SARI-
MA and naive model, while in the last 
three buildings (E-F-G) network 
ensembles performs better than naive 
model with results nearer to SARIMA. 

A. Introduction of External Data
Given the ability to find relationships 
between input and output data of neural 
networks, here we investigate the effects 
on neural network results with the 
introduction of additional information 
as inputs, in particular with the follow-
ing four inputs: 
1) Hour of the day (1-24) 
2) Working-day flag (0/1) 
3) Hot water hourly consumption (l) 
4) Luminosity (lux)

The first two gives important infor-
mation about the expected load pattern, 
in fact in office buildings is typical to 
have the demand concentrated during 
the working hours (9 AM - 17 PM in 
our case) and working days (Monday-
Friday in our case). Differently, other 
two measures can give information 
about a part of the demand (luminosity 
is related to lighting consumption) and 
about the activity inside the building. 

As stated in Eq. 10 we use the exter-
nal information at time t to predict y 1 t 2 , 
this is possible because a part of external 
information (I k) are known in the 
future, like the hour of the day and the 
working day flag. The other two mea-
sures (I u) are forecasted as well, so the 
Eq. 10 becomes: 

 xt5 f 1xt21, c, xt2N, It
k, Î t

u 2 , (18)

where Î  is the information predicted 
with a neural network. 

Table 5 shows the var iation of 
MAPE error due to the introduction of 
the four additional inputs in both neural 
network and SARIMA models. Neural 
networks are evidently able to exploit 
the useful information for forecasting 
contained into additional data (2 40% 
average variation) more than SARIMA 
model (21.12% average variation). 

In order to analyze the improvement 
given by the introduction of external 

TABLE 4 Comparison between neural networks (best testing one and RNCL ensemble), 
naive model and SARIMA model. In bold the lowest error for each building.

BUILDING MSE MAPE

BEST RBF RNCL NAIVE SARIMA BEST RBFN RNCL NAIVE SARIMA

A 25.55 46.63 13.89 10.48 9.62 16.21 5.06 4.27
B 14.39 25.98 3.98 2.10 8.35 12.84 3.60 2.90 
C 17.21 25.84 8.1 3.54 7.43 11.86 4.96 3.19 
D 27 50.92 14.87 11.85 8.96 17.49 6.03 5.91 
E 8.63 9.79 15.96 8.68 4.22 4.26 5.14 3.93 
F 37.29 38.05 50.11 35.95 8.41 8.48 9.2 8.58 
G 18.48 16.56 18.06 14.24 2.66 2.55 2.76 2.42 

TABLE 5 Effects of the introduction of additional data on MAPE error with SARIMA 
and RNCL ensemble. In bold the lowest error for each building. 

BUILDING RNCL ENSEMBLE SARIMA

NO EXT. EXT 6 NO EXT. EXT. 6

A 16.21 4.60 271.6% 4.27 4.23 20.94% 
B 12.84 3.60 280% 2.90 2.91 10.34% 
C 11.86 4.1 265.4% 3.19 3.02 25.33% 
D 17.49 6.84 260.9% 5.91 5.95 10.67% 
E 4.26 4.16 22.3% 3.93 3.88 21.27% 
F 8.48 8.51 10.35% 8.58 8.57 20.12% 
G 2.55 2.6 11.96% 2.42 2.39 21.24% 

A reliable forecasting of load demand could help to 
avoid dispatch problems given by unexpected loads, 
and to give vital information to make appropriate 
decisions on energy generation and purchase, 
especially market-based dynamic pricing strategies.
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data we can examine the difference 
between errors made by RNCL ensem-
ble before and after the introduction of 
additional inputs. This kind of analysis is 

visible in Figure 3 where we show the 
difference of absolute error (ET

2 2 ET
1) 

between the testing matrix (see Eq. 17) 
of the RNCL without external data 

(ET
2) and with additional data (ET

1), pos-
itive errors mean that external data have 
improved the forecasting, vice versa for 
negative errors. Results shown in Fig-
ure 3 reflect the values presented in 
Table 5, in some buildings the introduc-
tion of external data drastically improves 
the forecasting accuracy. We can observe 
different error patterns for each building 
but however we can draw some general 
conclusions: in all the buildings the 
improvement is located more frequently 
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FIGURE 3 Comparison between error matrix (ET5 ET
2 2 ET

1) of RNCL ensemble before (ET
2) and after (ET

2) the introduction of external data. 
Errors shown are absolute (kW). (a) Building A, (b) Building B, (c) Building C, (d) Building D, (e) Building E, (f) Building F, and (g) Building G.

Forecasting effectiveness can be measured by its 
accuracy (the difference between predicted and real 
value) but the maximum error achieved (error peak) is 
a critical factor.
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on non-working hours (hours 12 8 an 
172 24) than in central hours and there 
are some particular time periods (in 
range 302 70 and 2002 230), when 
weekends occur, with clear improve-
ments (visible as darker horizontal 
bands). As shown in Figure 2, it is evi-
dent how additional data help neural 
networks to predict the behavior outside 
working hours, as expected from the 
introduction of information about the 
working days and weekends. 

Finally, an analysis of the maximum 
absolute error achieved by RNCL and 
SARIMA models is given in Figure 4. 
In four on seven buildings (A-B-D-F) 
RNCL ensemble produces a lower 
maximum absolute error than SARI-
MA model and however only in build-
ing G the RNCL maximum error is 
markedly greater (almost twice) than 
SARIMA. 

VII. Discussion
Our comparison is aimed at showing 
how the various techniques are able to 
exploit additional information and how 
the RNCL ensemble method leads to a 
drastic improvement over the utilisation 
of neural networks for STLF. 

Results shown in Table 4 underlines 
the best performances of a SARIMA 
model on all the buildings taken into 
account in this paper. It may be not 
surprising to see that in some buildings 
(e.g. B and F) a naive model gives error 
values near the ones obtained with the 
other two models, this is a clear sign 
that the ‘conservative’ behavior of that 
model, which proposes as a prediction 
the output already observed (see Sec-
tion III.A), is able to cope in some 
cases with complexity as good as more 
advanced models in absence of use-
ful and reliable information for the 
forecasting. 

As specified before, the number of 
radial-basis functions into the hidden 
layer has been chosen after a set of pre-
liminary experiments. In order to give 
more details about the behavior of 
RNCL ensembling, and more in general 
RBFNs, we gives in Table 6 average 
errors for four different number of func-
tions into the hidden layer. We can 

observe how the performance degrades 
with the increasing of the number of 
hidden functions, a clear example of 
overfitting phenomenon. 

Another critical topic raised by 
experimentations is the feature selection 
process. As we observed, the introduc-
tion of additional data has improved the 
performances of neural networks more 
than SARIMA model: the former 
includes additional data in a nonlinear 
way (see Eq. 10) trying to model even 
complex relationships between input 
and ouputs, while the latter incorporates 
external data as a simple linear factor 
(see Eq. 8). In real-world cases, we usual-
ly have available a large amount of dif-
ferent data typologies and for each of 
them, we have multiple options about 
the choice of sampling rate, normaliza-
tion, smoothing factors, etc. Thus, the 
problem of selecting the optimal subset 
of available data becomes critical for two 

reasons: at first, a selection allows to 
reduce the data dimensionality with 
positive consequences (e.g. faster com-
putation or reduction of memory 
requirements) and secondly, the process 
of feature selection may gives useful 
information about the system we are 
observing. 

VIII. Conclusion
This paper analyzes the application of 
Regular ized Negative Correlation 
Learning (RNCL) ensemble methodol-
ogy [23] to the problem of energy load 
hourly prediction, with an investigation 
on the effects of the introduction of 
external data, i.e. information related to 
the energy load. Various models of dif-
ferent complexity have been tested on 
real load data coming from seven office 
buildings located in Rome, Italy. 
Although selected buildings are not 
part of a Smart Grid, we think that the 

FIGURE 4 Maximum absolute error obtained by RNCL and SARIMA models with additional data. 
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TABLE 6 Average errors on all the buildings obtained with RNCL ensemble 
at the change of the number of functions into the hidden layer.

NUMBER EXTERNAL DATA WITH EXTERNAL DATA

NUMBER OF 
 FUNCTIONS MAE MSE MAPE MAE MSE MAPE 

16 3.33 21.84 7.52 2.50 14.16 5.10 
32 3.89 28.57 9.65 2.42 13.32 4.97 
64 4.13 30.54 10.53 2.39 12.61 4.92 
128 4.30 32.32 11.04 2.56 13.72 5.45 

RNCL ensemble is able to achieve a marked error 
reduction after the introduction of external data, while 
a linear model such as ARIMA/SARIMA, in spite of its 
good results presented in this paper, is not able to 
exploit the introduction of additional data.
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questions raised by this paper can be 
extended to any more general scenario. 

Given the increasing criticality of 
load forecasting for electric grids, espe-
cially when hardly predictable factors are 
introduced (e.g. generation from renew-
able sources) and where complex factors 
like dynamic pricing and peak/load 
shifting become common and desirable. 

A common drawback about the 
application of neural networks is their 
variability due their high sensitivity to 
initial conditions. A high variance of 
performances measures may be a big 
limit for the applicability of such tech-
niques to an engineering field where 
the reliability is commonly preferred to 
the overall average accuracy. RNCL 
ensemble shows the possibility  to com-
bine the output of several neural net-
works achieving an interesting trade-off 
between roughness of output and error 
performance. 

The comparison with a common 
seasonal time-ser ies model such as 
SAR IMA and a naive model gives 
useful information about the utilisa-
tion of neural network ensembles. 
Furthermore, this work underlines the 
importance of a com parison with triv-
ial models, especially in forecasting, in 
order to und erstand the intrinsic char-
acteristics of the data object of fore-
casting (an interesting discussion about 
the creation of error measures includ-
ing this factor is in [26]). 

RNCL ensemble  is able to achieve 
a marked error reduction after the 
introduction of external data, while a 
linear model such as ARIMA/SARI-
MA, in spite of its good results present-
ed in this p aper, is not able to exploit 
the introduction of additional data. In 
this work, after an investigation about 
HVAC systems and peo ple activities, 
and after a statistical analysis of data 
sets, we selected a  subset of additional 
inputs. However, it would be interest-

ing a further investigation about the 
selection of optim al subset among all 
the available inputs to reduce forecast-
ing errors and improve the knowledge 
about the correlations present between 
available data. Similar conclusions may 
be drawn on the selec tion of optimal 
input lags (L) in order to reduce the 
complexity of NN parameters space 
and speed up the training phase. 

An interesting development would 
be the introduction of a feature selection 
mechanism into the overall forecasting 
framework, in order to have an optimal 
set of inputs for each forecasting prob-
lem. Finally, another future step would 
be the application of RNCL and neural 
network o n a realistic scenario involving 
electricity generation and energy storage 
with the analysis of the obtained cost/
efficiency. 
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