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� During the ten years, seasonal climate forecasts have improved their skill.
� We analyzed the link between summer average temperature and demand over Italy.
� Both deterministic and probabilistic forecasting approaches are here considered.
� Climate forecasts show a significant skill in predicting the demand in many regions.
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Air temperature is an effective predictor for electricity demand, especially during hot periods where the
need of electric air conditioning can be high. This paper presents for the first time an assessment of the
use of seasonal climate forecasts of temperature for medium-term electricity demand prediction. The
retrospective seasonal climate forecasts provided by ECWMF (European Centre for Medium-Range
Weather Forecasts) are used to forecast the June–July Italian electricity demand for the period 1990–
2007.

We find a relationship between summer (June–July) average temperature patterns over Europe and
Italian electricity demand using both a linear and non-linear regression approach. With the aim to eval-
uate the potential usefulness of the information contained into the climate ensemble forecast, the anal-
ysis is extended considering a probabilistic approach.

Results show that, especially in the Center-South of Italy, seasonal forecasts of temperature issued in
May lead to a significant correlation coefficient of electricity demand greater than 0.6 for the summer
period. The average correlation obtained from seasonal forecasts is 0.53 for the temperature predicted
in May and 0.19 for the predictions issued in April for the linear model, while the non-linear approach
leads to the coefficients of 0.62 and 0.36 respectively. For the probabilistic approach, seasonal forecasts
exhibit a positive and significant skill-score in predicting the demand above/below the upper/lower ter-
cile in many regions.

This work is a significant progress in understanding the relationship between temperature and electric-
ity demand. It is shown that much of the predictable electricity demand anomaly over Italy is connected
with so-called heat-waves (i.e. long lasting positive temperature anomalies) over Europe.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The main goal of this work is to investigate the use of seasonal
climate forecasts for electricity demand over Italy, focusing on the
summer period between 1990 and 2007. During the last decade,
climate forecasts have significantly improved their skill on sea-
sonal time-scales (from one month to six months) [27,5,22,4] but
their application to decision-making processes are still rare on sci-
entific literature. Considering also the challenges raised by the
recent FP7 European Projects on Climate Services (CLIMRUN [1],
SPECS [3], EUPORIAS [2]), this paper provides an initial assessment
of the use of seasonal climate predictions for power systems man-
agement with the focus on electricity demand (load) forecast at
lead times of one and two months.
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Given the necessity of ensuring the balance between electricity
production and demand, an accurate estimation of future weather
state could improve the efficiency and reliability of energy man-
agement at local and national scales. In fact, weather is a crucial
element both for the generation and demand of electricity
[25,16] The relationship between temperature and demand is
well-known and it has been already investigated in many works
focused on Europe. Valor et al. [28] and Pardo et al. [24] first recog-
nized the strong coupling between electricity demand and temper-
ature. Furthermore Bessec and Fouquau [9], analysing 15 European
countries over twenty years, put the emphasis on the increasing
sensitivity of electricity demand with respect to temperature dur-
ing the recent years. On Italy, load forecasting has been analyzed
by Bianco et al. [10] and De Felice et al. [17] at short time scales.
However, the predictability of the medium-term load and the use-
fulness of seasonal climate forecasts at this time-scale need to be
understood.

This paper focuses on Italian demand during summer. Due to
the high temperatures that can be reached in many Italian regions,
power grid can experience high demand peaks especially consider-
ing the increasing use of air conditioning, which have drastically
increased the sensitivity of demand with respect to temperature
in the last decade (an analysis of this phenomenon can be found
in De Felice et al. [17]).

The effectiveness of seasonal climate forecasts for electricity
demand forecasting is here analyzed both considering determinis-
tic and probabilistic approaches. Probabilistic predictions allow for
the reliable forecasting of future dichotomous events [19]. This
information can be of particular value in situations where proba-
bilities of different outcomes are needed in advance to make an
optimal decision. To this end, instead of evaluating the difference
of the ensemble mean from the target demand (deterministic
approach), we evaluate the probability from the ensemble forecast
in predicting a demand above/below normal (defined as the upper/
lower tercile of the observed demand distribution).

After the description of the applied method in Section 2 we
introduce and analyze the weather and climate data used in this
paper in Sections 3.1 and 3.2 respectively. Section 4 provides a
description of the probabilistic measures used in the rest of the
paper. Then the results for the deterministic and probabilistic
approaches are described respectively in Sections 5.1 and 5.2. All
the results are discussed in Section 6 where we also provide an
in-depth analysis on the relationship between heat-waves and
electricity demand in Section 6.1. Finally, conclusions of this paper
are reported in Section 6.2 outlining the future steps of this
research.
1 ECMWF www.ecmwf.int. is an intergovernmental organisation which provides
2. Method

All the results shown in this paper have been obtained consid-
ering two regression approaches: a linear regression model and a
Support Vector Machine, a well-established non-linear method.

2.1. Linear regression

Our linear approach has been inspired by Navarra and Tribbia
[23] and it is based on the assumption of linearity between two
fields, here denoted respectively with Z and S.

Considering the equation Z ¼ AS we compute A matrix solving
the least squares minimization problem:

A ¼ ZS0ðSS0Þ�1 ð1Þ

Finally we obtain the forced by field as:

Zforced ¼ AS ð2Þ
It is worth noting that the residual Zfree ¼ Zforced � AS represents the
variability of Z not connected with the variability of S.

To reduce significantly the dimension of both data matrices, we
applied Principal Component Analysis (PCA) using coefficients
instead of original data, retaining the 99% of the total variance.
Thus projecting Z and S into the principal component space we
obtain respectively eZ and eS, both with the selected modes as
columns.

Using the PCA approach, Eq. (1) becomes:

A ¼ eZeS0ðeSeS0Þ�1
ð3Þ

As suggested in Cherchi et al. [12] we can remove the least signifi-
cant parts of A matrix (see Eqs. (1) and (3)) using a significance test.
Here we put to zero all the coefficients of A that do not fit the con-
fidence intervals of a 10% Student t-test for the correlation between
Z and S.

2.2. Support Vector Machine (SVM)

SVMs were developed by Cortes and Vapnik [13,29] for binary
classification and then extended to regression problems (Support
Vector Regression). The idea behind support vector-based methods
is to use a non-linear mapping U to project the data into a higher
dimensional space where solving the classification/regression task
is easier than in the original space.

Following an approach similar to the linear method, we can
think the SVM as a non-linear function f ð�Þ:

Zforced ¼ f ðSÞ ð4Þ

In our case, we used a Support Vector Regression method called �-
SVR [15], which tries to find a function f ðxÞ ¼ hw;UðxÞi þ b that has
at most � deviation from the target values. A �-SVR model has three
parameters: the regularization parameter C, the � value, and the
width of the radial kernel c.

The selection of the SVR model parameters has been carried out
applying a grid search among 54 combinations of
C 2 ½10�1;101�; � 2 ½10�2;1�) and c 2 ½2�10;22�. The parameters used
through our work are the following: C ¼ 10; � ¼ 10�2; c ¼ 2�10.

As we did for the linear model, we use the PCA technique to
reduce the dimensionality of S and Z spaces, considering pattern
coefficients instead of the original data fields.

3. Data

3.1. Climate data

A seasonal climate forecast provides information about future
climate conditions with a lead-time of one to six months. In this
work, we use retrospective forecasts produced by the ECMWF1 Sys-
tem 4 forecast system. This prediction system has been adopted as
operational system since November 2011 [22]. For a detailed analy-
sis of the seasonal prediction skills of System 4 forecasting system
we refer to the works by Kim et al. [20] and Doblas-Reyes et al. [14].

Forecasts are issued monthly, here we consider two different
starting months: April and May. For each starting month we used
the predicted values of temperature fields for June and July, i.e.
respectively with two and one month of lead time.

A way to deal with the complexity and uncertainties of the cli-
mate system is to use an ensemble of predictions, i.e. having at
each starting date a set of forecasts each with slightly different ini-
tial conditions. System 4 has 51 ensemble members for the starting
date in May 1st and 15 for April 1st. Fig. 1 shows an example of an
operational forecasts and super-computing facility for scientific research

http://www.ecmwf.int


Fig. 1. An example of System 4 Seasonal Forecast issued in date 1/5/2012. The red
lines represent the temperature predicted by each of the 51 members, the black line
is the ensemble mean and the shaded area is the interval between the first and third
quartile. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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ensemble temperature forecast starting the first day of May 2012.
Given that this work is focused on Italy we selected a geographical
domain centered on Europe, with the latitude between 20 N and
80 N, and the longitude between 40 W and 70 E. Data is on a gauss-
ian grid with a resolution of about 80 km, with a total of 13,260
grid points.

To evaluate the System 4 prediction skill, we compare the pre-
dicted temperature with ERA-INTERIM reanalysis [8]. A reanalysis
is an estimation of past weather states obtained by weather simu-
lations assimilating observations (ground stations, satellites, etc.).
We may consider the reanalysis as the best available estimation
of temperature considering the entire domain. Fig. 2 reports the
skill of 1-month lead (Fig. 2b) and 2-months lead (Fig. 2a) forecasts
to predict seasonal anomalies of mean temperature (i.e. deviations
from the average computed on 1990–2007).

A compact visualization of temperature data can be obtained
using Principal Component Analysis (PCA) which allow us to
decompose the temperature field into the most important compo-
nents. Fig. 3 shows the three most informative patterns (i.e. with
the highest variance) with the relative PC coefficients.

3.1.1. Application of regression methods to climate ensemble data
Temperature data field used in this work (here denoted as S)

have k� n dimension with k the number of all the grid data points
and n the number of yearly samples.

Given that the climate predictions we use in this paper are
ensembles with 15/51 members we create a S matrix containing
(a) System 4 - April

Fig. 2. Correlation coefficient between June–July temperature anomaly derived by ERA-
with a 5% of significance calculated by bootstrapping.
all the members data, in this way, unlike methods using ensemble
mean, our approach allow us to exploit all the information con-
tained into the ensemble members. The S of the entire ensemble
has r � ðnmÞ dimension with m the number of ensemble members.
S is obtained concatenating for each grid points all the temperature
values for each ensemble member. Having tm

1;1990 as the first tem-
perature grid point for year 1990 considering the m-th ensemble
member, we can write S in the following way:

S¼

t1
1;1990 . . . t1

1;2007 t2
1;1990 . . . t2

1;2007 . . . tm
1;1990 . . . tm

1;2007

..

.

t1
k;1990 . . . t1

k;2007 t2
k;1990 . . . t2

k;2007 . . . tm
k;1990 . . . tm

k;2007

2
664

3
775

ð5Þ

To make the dimension of the Z field (here electricity demand) con-
sistent with S, the former has been manipulated replicating the
temporal dimension for m times in order to increase the number
of columns from n to nm. In this way, at the end of the procedure
Zforced (see Eq. (2)) will contain m different estimations of Z, one
for each ensemble member.

3.2. Electricity data

Electricity demand data used in this paper have been provided
by TERNA (Italian TSO, Transmission System Operator) and they
refer to the period from the 1990 to 2007. Hourly data are subdi-
vided by eight regions: North–West (NW), North (N), North–East
(NE), North-Center (CN), Center (C), South (S), Sicily (I1) and Sardi-
nia (I2). At first, given that this work focuses on summer demand,
we calculated the monthly demand summing up all the hourly-
loads for each month, then selecting only June and July. August
data has not been included due to industrial closure, in fact during
August industrial facilities usually close for one or two weeks
reducing electricity demand independently of temperature.

Given that during 1990–2007 the electricity demand was stea-
dily increasing, trend removal has been accomplished by fitting a
second-order regression model y ¼ aþ b1xþ b2x2 for each region
and then computing the deviation from the fit (i.e. regression
residuals). In Table 1 we provide the intercept, the two coefficients
for each region, and some statistics about the deviations. Fig. 4
shows the eight normalized electricity demands time-series (black
line) and the deviations obtained after removing the polynomial
trend (red line).
(b) System 4 - May

INTERIM dataset on years 1990–2007 and climate forecast. Dots represents points



(a) System 4 - 1st Pattern (b) System 4 - 2nd Pattern (c) System 4 - 3rd Pattern

(d) System 4 - 1st PC (e) System 4 - 2nd PC (f) System 4 - 3rd PC

(g) ERA-IN - 1st Pattern (h) ERA-IN - 2nd Pattern (i) ERA-IN - 3rd Pattern

(j) ERA-IN - 1st PC (k) ERA-IN - 2nd PC (l) ERA-IN - 3rd PC

Fig. 3. First three patterns with relative coefficients obtained using Principal Component Analysis on System 4 and ERA-INTERIM temperature data. The three patterns
represent for System 4 and ERA-INTERIM respectively the 37.4% and 49.4% of total variance.

Table 1
June–July summary statistics. All the unit measures are in GW h. For the maximum
and minimum deviations in brackets we show the respective year.

a b1 b2 r (deviations) Max. Dev. Min. Dev.

NW 3788 74 2.5 137 170 (2003) �825 (2004)
N 7044 31 14.6 247 303 (2006) �825 (2004)
NE 4552 23 10.9 227 450 (2006) �657 (2004)
CN 4655 184 2.2 185 403 (2003) �464 (2007)
C 4963 105 5.1 136 386 (2003) �260 (2004)
S 4890 19 8.2 113 328 (2003) �219 (1999)
I1 1969 37 2.4 57 153 (2003) �87 (1996)
I2 1384 15 1.3 70 145 (2003) �139 (2007)
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All the datasets have been normalized dividing each time-series
by its standard deviation.

In this paper we omitted region I2 because of the small demand
associated to it (see Table 1).
4. Probabilistic metrics

To evaluate the performances with the deterministic approach,
we use the Pearson correlation coefficient. For a more reliable esti-
mation of correlation and to reduce the influence of outliers, we
estimated the correlation coefficient through a bootstrap proce-
dure with 1000 replications.

To assess the probabilistic quality of the forecasts we follow the
approach and the skill measures described in Wilks [30]. The most
common accuracy measure is the Brier Score (BS) [11], basically
the mean squared error of the probability forecast. Being
yi 2 ½0;1� the probabilistic forecast for time i and oi 2 f0;1g the
dichotomous event, the Brier Score is defined as follows:

BS ¼ 1
N

XN

i¼1

ðyi � oiÞ2 ð6Þ

We can observe that 0 6 BS 6 1 and that better forecasts have a
lower BS. The Brier Score can be transformed into a skill score con-
sidering the BS of a reference forecast, BSref . The Brier Skill Score
(BSS) is consequently defined:

BSS ¼ 1� BS
BSref

ð7Þ

As reference forecast is used the climatological relative frequency, i.e.
the observed frequency of the event during the considered period.

We introduce here further quality measures: reliability and
resolution.

Reliability (REL) summarizes the conditional bias of the forecast
and it consists of a weighted average between forecast probabili-
ties and relative frequencies of observed events. This measure
can be defined as follows:

REL ¼ 1
n

XI

i¼1

Ni½yi � pðo1jyiÞ�
2 ð8Þ

where n is the length of all the available observations, N the number
of times that each forecast y is used, and I the number of distinct
forecast values.



Fig. 4. Normalized electricity demand time-series for June/July for all the eight Italian regions are shown with the black line. Red dots describe the time-series obtained after
the removal of the polynomial trend which is shown with the dashed gray line. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Table 2
Correlation coefficient obtained by leave-one-out cross-validation for each data
source and regression model considering June–July average electricity demand.
Correlation values are computed applying a 1000 iterations bootstrapping procedure.

June–July Pearson correlation

Linear model SVM

May April Difference May April Difference

NW 0.54 �0.19 �0.73 0.55 0.32 �0.23
N 0.73 �0.04 �0.77 0.81 0.32 �0.49
NE 0.70 0.16 �0.54 0.71 0.31 �0.40
CN 0.35 0.39 0.04 0.63 0.17 �0.46
C 0.63 0.25 �0.38 0.49 0.50 0.01
S 0.70 0.48 �0.22 0.57 0.56 �0.01
I1 0.38 0.29 �0.09 0.43 �0.12 �0.56

Avg. 0.53 0.19 �0.34 0.62 0.36 �0.26
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Resolution (RES) represents the ability of the forecasts to sepa-
rate situations into different types and differently from REL, for a
good forecast we want RES to be as large as possible. The definition
is the following:

RES ¼ 1
n

XI

i¼1

Ni½pðo1jyiÞ � o�2 ð9Þ

o ¼ 1
n

XI

i¼1

Nipðo1jyiÞ ð10Þ

Similarly to BSS, positively oriented RelSS and ResSS can be defined
as:

RelSS ¼ 1� REL
BSref

ð11Þ

ResSS ¼ RES
BSref

ð12Þ

A way to visually compare the probabilistic performances is
through the use of reliability diagrams (see Wilks [30], Sec-
tion 8.4.4). These diagrams, shown in Fig. 6, illustrate the observed
frequency (conditional distribution of observation, pðojjyjÞ) with
respect to the forecast pðyÞ. The forecasts value have been discret-
ized and then the bins are ‘‘centered’’ into the average of the sam-
ples they represent (see Wilks [30] for more details). Basically, the
plot shows the probability that the event occurs when the forecast
is within a specific range.

Another way to measure the capability of each probabilistic
forecast to discriminate the events is called discrimination. Consid-
ering the two joint distributions pðyijo0Þ and pðyijo1Þ, the discrimi-
nation (DISC) measures the difference between their means:

DISC ¼ jlyjo1
� lyjo0

j ð13Þ

Larger is the distance between these two distributions and better is
the capability of the forecast of detect the event. Discrimination dia-
grams provide a graphical display of joint distributions as functions
of the forecast probability y. Better is the discrimination between
two events and smaller is the overlap between the likelihoods. Per-
fect forecasts lead to DISC ¼ 1 with pð1jo1Þ ¼ 1 and pð0jo0Þ ¼ 1.

5. Results

In this section we apply the methodology described in Section 2
for deterministic (Section 5.1) and probabilistic (Section 5.2)
forecasting.

As stated in Section 2, to reduce the dimensionality of the
involved spaces we apply a PCA on both the temperature and
electricity demand fields. In this way, the dimensionality of tem-
perature field will change from 8892 dimensions (spatial grid of
57� 156 points) to 214 (the number of modes that explain the
99% of the observed variance) and the electricity demand goes
from 7 (the regional data sets) to 6.

The quality measures described in Section 4 are applied to com-
pare the two seasonal climate predictions for electricity demand
forecasting considering the average electricity demand for June
and July in the period 1990–2007. All the results shown below
have been obtained through a leave-one-out cross-validation pro-
cedure (where each yearly sample is left out of the model calibra-
tion in turn and predicted once) in order to evaluate the model
predictions for data it has not already seen.
5.1. Deterministic forecasting

The correlation coefficients between the predicted and the mea-
sured electricity demand are shown in Table 2. The R2 obtained
from the forecasts issued in May is 0:2;0:36;0:36;0:14;0:25;0:38
and 0.11 for the seven domains. Using the forecasts issued in April
we instead obtain the following R2 : �0:2;�0:11;0; 0:16;0:06;0:2
2;0:08.

The performance of SVM is generally better than the linear
model, except for C and S where the linear regression leads to
higher correlation coefficients.

Consistently with the results obtained with the short-term
prediction [17], solid performances are obtained in south Italy for
both the starting dates and the regression models. As already
suggested by Fig. 2, the forecasts issued in May lead to a correlation
consistently higher than in April, especially for the northern



Table 3
MAPE error obtained by leave-one-out cross-validation for each data source and
regression model considering ‘‘denormalized’’ June–July average electricity demand.

June–July MAPE (%)

Linear model SVM

May (%) April (%) May (%) April (%)

NW 1.8 2.3 1.8 1.8
N 1.3 2 1.3 1.7
NE 2.1 2.7 2 2.4
CN 2 1.9 1.6 1.9
C 1.1 1.4 1.2 1.1
S 0.9 1.1 1 1
I1 1.5 1.5 1.4 1.7

Avg. 1.6 1.9 1.6 1.7

Table 4
Probabilistic measures for entire Italy considering June–July average electricity
demand.

Linear Model BSS RelSS ResSS DISC

Upper – May 0.14 0.93 0.21 0.15
Upper – April �0.07 0.90 0.03 0.03
Difference 0.21 0.03 0.18 0.12
Lower – May 0.13 0.97 0.17 0.16
Lower – April �0.02 0.91 0.08 0.06
Difference 0.15 0.06 0.09 0.10

SVM
Upper – May 0.21 0.99 0.21 0.21
Upper – April 0.01 0.94 0.07 0.09
Difference 0.20 0.05 0.14 0.12
Lower – May 0.13 0.97 0.17 0.18
Lower – April �0.07 0.83 0.10 0.04
Difference 0.20 0.14 0.07 0.14

Table 5
Brier Skill Score (BSS) obtained by a leave-one-out cross-validation procedure
considering June–July average electricity demand. Values that are significant at the
10% level using a bootstrap procedure are shown in bold.

Above normal – BSS Below normal – BSS

Linear model SVM Linear model SVM

May April May April May April May April

NW 0.16 �0.27 0.14 0 0.03 �0.25 0.06 �0.04
N 0.20 �0.18 0.37 0.05 0.24 �0.13 0.19 �0.16
NE 0.22 �0.14 0.24 0.03 0.34 �0.15 0.29 �0.09
CN �0.07 0.00 0.19 0 �0.09 �0.05 0.09 �0.11
C 0.40 0.04 0.30 0.26 0.15 �0.03 0.06 0.06
S 0.32 0.02 0.37 0.12 0.39 0.31 0.12 0.20
I1 �0.03 �0.07 �0.09 �0.27 0.21 0.06 0.17 �0.24
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domains. Furthermore, the decrease of correlation due to the
increase of lead-time is less marked for the center-southern
regions evidencing a loss of predictability in the northern regions
(especially NW and NE).

To better describe the characteristics of ensemble-based predic-
tions, Fig. 5 illustrates the predicted load for S domain obtained by
using the linear model, displaying the estimation provided by the
ensemble and by each member.

A well-known error measure used to compare forecasting
methods is the MAPE (Mean Absolute Percentage Error). Although
percentage errors are scale-independent, they have the disadvan-
tage of being undefined if the predictand is equal to zero and hav-
ing excessively large values when the predictand is close to zero.
Thus, we can not use MAPE on the load anomalies but we can apply
it if we ‘‘denormalize’’ the forecasts adding back the trend that has
been removed (as described in Section 3.2). In Table 3 we provide
the MAPE for both the forecast methods and considering both the
different starting dates.

5.2. Probabilistic approach

Differently from the deterministic forecast, where we have the
aim to predict the absolute magnitude of electricity demand
change, here we evaluate the probabilistic skill of predicting the
dichotomous events of having the electricity demand above/below
the normal. Estimating the probability of having such events is of
potential relevance for the efficient economical management of
an electric utility.

To quantify the ‘‘normal’’ demand we use the middle tercile
(33th to 66th percentiles), i.e. a demand above/below normal is
exceeding/falling below the 66th/33th percentile.

Thus, for each year i the predictand is a binary event that is
oi ¼ 1 if the electricity demand is above/below the upper/lower
tercile of the sample distribution and oi ¼ 0 otherwise. The
predictand is built through a leave-one-out cross-validation proce-
dure for each domain considering the entire period 1990–2007.

In Tables 4 and 5 the Brier Skill Score (BSS) of seasonal forecasts
issued May 1st and April 1st are shown for both ‘‘above normal’’
(upper) and ‘‘below normal’’ (lower) events.

In Table 4 the skills shown are computed on the entire domain,
obtained considering all the regional domains as a single one. As
already observed in the previous section the difference in perfor-
mances between forecasts issued in May and in April is very evi-
dent, the forecasts issued May 1st perform considerably better
than those started in April. A better capability of predicting tem-
perature leads to higher predictive skills of electricity demand. In
general, the usefulness in using the seasonal forecasts issued in
(a) System 4 - May (b) System 4 - April

Fig. 5. Scatterplot of predicted June–July load anomaly on South Italy (S) by linear regression.
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April (i.e. two months of lead time) is none for both the events, in
both the cases the BSS is close to or smaller than zero. As explained
previously in Section 4, a negative BSS means that using a climate
forecast for electricity demand prediction is worse than not using
it.

The overall good performances of May forecasts can be
observed in Figs. 6 and 7, where reliability and discrimination dia-
grams of the forecasts provided by SVM are shown. The reliability
diagram (Fig. 6) indicates a good agreement between the forecast
(a)

(c) Above Normal

Fig. 6. Reliability diagrams of seasonal forecasts in predicting demand above (left) and b
each bin.

(a) System 4 - May - upper

(c) System 4 - May - lower

Fig. 7. Discrimination diagram of probabilistic forecasting (upper and lower events) of e
the average of the distribution.
issued in May and the observed frequency, especially for the above
normal event. On the other side, the April forecast definitely shows
a weak prediction, as shown in Table 4. The panels below the reli-
ability diagrams show the distribution of the forecast values for
both the starting dates.

The discrimination diagram (Fig. 7) shows how the separation
between the likelihoods of both the events is greater when using
May seasonal forecasts, although a clear overlap still exists. More-
over, at least for the May forecasts, the upper event seems to be
(b)

(d) Below Normal

elow (right) normal using SVM. Lower panels show the distribution of samples for

(b) System 4 - April - upper

(d) System 4 - April - lower

lectricity demand using seasonal climate forecasts and SVM. Dashed line represents



Table 6
Probabilistic forecast of electricity demand for C and S domains related to the above
normal event using linear model. The percentage value represents how many
members inside the ensemble predict the event occurrence. The event occurrence has
been highlighted by shaded grey.
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better discriminated with the two likelihood more separated than
for the lower event.

Table 5 shows instead skill scores for all the regional domains.
We can observe that the majority of the values (9 on 14 for the lin-
ear model and 10 on 14 for the SVM) for the May forecast are signif-
icantly different from zero while only few cases for April forecast
(one for the linear model and three for the SVM). Moreover, only
in few cases the climate forecasts with two months of lead-time
lead to results better than using the climatology (i.e. positive
BSS). However, for the South (S) and partially for the Center (C)
domains we obtain significant positive scores for both the events
and for the forecasts issued in May and in April. Again, as in the
deterministic results, the electricity demand of South domain
seems to be the most predictable using temperature forecasts.

To better understand the operational aspects of the results
shown in Table 5 we show the probabilistic forecast for the above
normal load for C and S domains in Table 6. For each season we
indicate whether the above/below normal event has happened
and the prediction provided by both the starting dates. It is worth
noting that the BSS for the climate forecasts issued in April is 0.04
and 0.02 for the two datasets, this means that the prediction pro-
vided by seasonal forecasts is only slightly better than using a fixed
value (observed frequency of 33%).
2 COAER is an association of national manufacturers of equipment and systems for
air treatment. COAER is within the ANIMA Federation, an industry group with 7.250
employees and a total turnover of over 1.420 million euro.
6. Discussion

This work investigates for the first time a potential application
of seasonal climate forecasts to energy sector. During summer,
power networks in Mediterranean countries, like Italy, experience
a dramatic increase of demand and peak loads due to air condition-
ing and refrigeration. This means that having a reliable forecast of
high/low demand events with one or two months of lead time
could be useful for system operators and electric utilities.

For this analysis, we followed an approach inspired by the Coupled
Manifold [23] that allowed us to deal with the high-dimensionality of
the input involved and to exploit effectively all the information con-
tained in the ensemble for forecast purposes. To widen our analysis,
besides a linear model, we have also included a non-linear regression
approach based on Support Vector Machines (SVM).

For an extensive analysis, we used temperature information
provided by seasonal forecasts both for deterministic and probabi-
listic forecasting.
Both show consistent results, with better performances by
using forecasts issued in May than in April both at national and
regional level. On the national domain the results show the poten-
tial advantages in using seasonal predictions with one month of
lead time for electricity demand forecasting. Climate forecasts
issued in April tends to be ineffective in predicting national elec-
tricity demand, although they show positive skill scores in predict-
ing demand for Center and South Italy.

The different performance between 1-month and 2-months
lead-time could be anticipated by observing Fig. 2 where the
higher accuracy of May’s temperature forecasts over Italy is
evident.

The probabilistic approach clearly shows the difference in per-
formances with respect to the lead-time, with the predictions
obtained with the use of April seasonal forecasts definitely worst
than the use of the climate forecasts issued in May. We also
observe a slight tendency of the forecasts to overestimate the
occurrence of above normal events (see Fig. 6a). Observing regional
domains, April forecasts are in few cases rarely better than using
climatological information and leading to a significant skill score
only in few cases (S dataset for below normal event using linear
model and also S and C for above normal event using SVM). At
one-month lead-time, the forecasts show significant performance
for both the events (above and below normal) with a Brier Skill
Score greater than 0.3 over C, S, N and NE domains.

To summarize, this work is the first step in assessing the appli-
cation of seasonal forecasts for operational purposes. Results
obtained using seasonal forecasts in predicting electricity demand
over Italy are encouraging and thanks to the granularity provided
by using regional electricity demand datasets we have improved
our knowledge about the complex link between energy and cli-
mate. In the next section we want to examine in depth this link
focusing on the heat-wave that affected Europe in the last twenty
years.

6.1. Heat-waves in Europe

In 2003 Europe experienced a record-breaking heat-wave that
had dramatic health [21] and energy management impacts [16].
During the summer of 2003 temperature have exceeded by about
3 degrees the climatological mean (1961–1990) and the same year
we observe a positive deviation in demand over most of Italy load
domains (see Table 1).

To better examine this phenomenon, we take advantage of the
possibility to analyze temperature pattern through the PCA tech-
nique. The temperature pattern that better describes the heat-
wave phenomenon is the second pattern shown in Fig. 8a and b
shows the PC related to this pattern, where we can clearly observe
with two peaks in 1994 and 2003, i.e. in correspondence of the
strongest heat-waves that affected central Europe during the last
decade (see Fischer et al. [18] for an in-depth analysis on European
heat-waves).

Then in Fig. 8c we compare the coefficient time-series with the
electricity demand deviations of all the seven domains we consid-
ered. We can observe two important things: the peak related to
2003 leads to a peak demand for the center-south (i.e. the hotter)
regions (C, S, and I1) and the peak related to 1994 does not corre-
spond with evident demand peak for any domain. The absence of
response of electricity demand with respect to temperature before
2003 can be explained with the minor use of air conditioning
equipment in Italy. In support of this statement, we show in
Fig. 9 some statistics provided by ANIMA/COAER2 about the



(a) PCA Pattern (b) Pattern Coefficient

(c) Comparison of electricity demand anomalies

Fig. 8. 2nd Temperature pattern of climate forecasts issued in May (a). On the right (b) all the pattern coefficients for the ensemble members are shown in light gray with
their mean marked as a thick black line. Panel (c) shows the comparison between the coefficient (normalized) shown in (b) with the electricity demand of all the datasets.

Fig. 9. Number of room conditioning units sold in Italy by year.
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installed residential air conditioning equipment from 1991 to 2004.
It is clear how during the years 2003–2004 the number of installed
units increased drastically, while before 1999 the use of room air
conditioning was less than half compared to 2003.

Considering that extreme hot periods normally lead to increas-
ing electricity demand, especially in areas with a widespread use of
air conditioning (see our previous work [17] and Apadula et al. [6]
for further analysis related to Italy), the possibility to have an accu-
rate forecast becomes more important, especially considering that
extreme events will be more frequent in the future [7,26].

6.2. Future steps

As we stated before, this paper may be defined the first work
that proposes an application of climate information for the energy
sector at seasonal time-scales. The next step will be to extend the
analysis to entire Europe, analysing the electricity demand pro-
vided by ENTSO-E.3 This extension may help us to obtain more reli-
able and significant results. Furthermore the analysis will be
3 ENTSO-E (https://www.entsoe.eu/) is the European Network of Transmission
System Operators for Electricity.
extended to the winter period, given that in many northern Europe
countries peak demands are observed during cold periods due to
electric heating.
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