
[15:53 14/2/2011 jzr013.tex] Paper Size: a4 paper Job: JIGPAL Page: 1 1–9

Optimizing the start-up operations of
combined cycle power plants using soft
computing methods

ILARIA BERTINI, MATTEO DE FELICE, ALESSANDRO PANNICELLI and
STEFANO PIZZUTI, Energy, New technologies and sustainable Economic
development Agency (ENEA) ‘Casaccia’ R.C. , Via Anguillarese 301, 00123
Rome, Italy.
E-mail: ilaria.bertini@enea.it; matteo.defelice@enea.it;
alessandro.pannicelli@enea.it; stefano.pizzuti@enea.it

Abstract
In this article we present a study on the application of soft computing methods for the start-up optimization of a combined
cycle power plant. In particular, we use fuzzy sets in order to get a fitness function providing the effectiveness in the lattice
[0,1] (zero bad, one excellent) of the given start-up regulations. Then we applied a genetic algorithm to find the best start-up
regulations. Experimentation shows that the solution found remarkably improves the solution given by the process experts.
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1 Introduction

Combined cycle power plants (CCPPs) are a combination of a gas turbine and a steam turbine gen-
erator for the production of electric power in a way that a gas turbine generator generates electricity
and the waste heat is used to make steam to generate additional electricity via a steam turbine. For
such plants, one of the most critical operations is the start-up stage because it requires the concurrent
fulfilment of conflicting objectives (for example, minimize pollutant emissions and maximize the
produced energy). The problem of finding the best trade-off among conflicting objectives can be
arranged like an optimization problem. This class of problems can be solved in two ways: with a
single-objective function managing the other objectives, like thermal stress, as constraints, and with
a multi-objective approach.

At present, the problem of CCPP start-up optimization has been tackled in the first way using
simulators. As example, in [1] through a parametric study, the start-up time is reduced while keeping
the life-time consumption of critically stressed components under control. In [2] an optimum start
up algorithm for CCPP, using a model predictive control algorithm, is proposed in order to cut
down the start-up time keeping the thermal stress under the imposed limits. In [3] a study aimed at
reducing the start-up time while keeping the life-time consumption of the more critically stressed
components under control is presented.

In the last decade the application research of soft computing (SC) methods has become one of
the most important topics in industrial applications. In particular, in the field of industrial turbines
for energy production, fuzzy set theory [4] has been mainly applied to fault diagnosis [5–9], sensor
fusion [10] and control. Particularly, in the last area in [11] it is proposed a fuzzy control system in
order to minimize the steam turbine plant start-up time without violating maximum thermal stress
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limits. In [12] it is presented a start-up optimization control system which can minimize the start-up
time of the plant through cooperative fuzzy reasoning and a neural network making good use of the
operational margins on thermal stress and pollutant emissions. Moreover, Evolutionary Algorithms
(EAs) have already been applied to the CCPPs optimization. [13] proposes an application of an
evolutionary algorithm to the minimization of the product cost of complex CCPPs where both the
design configuration (process structure) and the process variables are optimized simultaneously. [14]
applies an evolutionary algorithm to optimize the feedwater preheating section in a steam power
plant from a thermodynamic viewpoint. [15] is concerned with the techno-economic optimization
of investments in combined cycle gas power plants.

In all the reported examples the global start-up optimization is never handled, therefore, in order
to solve this problem, in this work we propose a new approach based on SC methods where we
combine fuzzy sets and EAs. Thus, for each single objective we define a fuzzy set and then we
properly combine them in order to get a new objective function taking into account all the operational
goals. Then we used it as the objective function of an EA and we compared the solution found with
the one given by the process experts.

The article is structured as follows: in Section 2 we describe the problem we are dealing with,
Sections 3 and 4 report the details of the method we carried out, Section 5 shows experimental
results and finally Section 6 draws the conclusions.

2 The CCPPs

Gas and steam turbines are an established technology available in sizes ranging from several hundred
kilowatts to over several hundred megawatts. Industrial turbines produce high-quality heat that can
be used for industrial or district heating steam requirements. Alternatively, this high temperature
heat can be recovered to improve the efficiency of power generation or used to generate steam and
drive a steam turbine in a combined-cycle plant. Therefore, industrial turbines can be used in a
variety of configurations:

• Simple cycle (SC) operation which is a single gas turbine producing power only
• Combined heat and power (CHP) operation which is a simple cycle gas turbine with a heat

recovery heat exchanger which recovers the heat in the turbine exhaust and converts it to useful
thermal energy usually in the form of steam or hot water

• Combined cycle (CC) operation in which high-pressure steam is generated from recovered
exhaust heat and used to create additional power using a steam turbine (Figure 1).

The last combination produces electricity more efficiently than either gas or steam turbine alone
because it performs a very good ratio of transformed electrical power per CO2 emission. CC power
plants are characterized as the 21st century power generation by their high efficiency and possibility
to operate on different load conditions by reason of the variation in consumer load. CC plants are
highly complex systems but with availability of high powerful processors and advanced numerical
solutions, there is a great opportunity to develop high performance simulators for modelling energy
systems in order to consider various aspects of the system.

The start-up scheduling is as follows (Figure 2). From zero to time t0 (about 1200 s) the rotor
engine velocity of the gas turbine is set to 3000 rpm. From time t0 to t1 the power load is set to
10 MW and then the machine keeps this regime up to time t2. All this initial sequence is fixed. From
time t2 to t3 (about 3600 sec) the machine must achieve a new power load set point which has to be
set optimal and then the machine has to keep this regime up to time t4. The time lag t4–t3 is variable
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FIG. 1. CCPP.

FIG. 2. CCPP start-up operations.
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TABLE 1. Input control variables

Variable Meaning Operating range
X1 Intermediate power load set point (MW) [20–120]
X2 Intermediate waiting time (s) [7500– 10000]
X3 Gas turbine load gradient (MW/s) [0.01–0.2]
X4 Steam turbine load gradient (%/s) [0.01–0.2]

TABLE 2. Output variables

Variable Meaning Operating range
Y1 Start-up time (s) [11700–29416]
Y2 Fuel consumption (Kg) [53000–230330 ]
Y3 Energy production (KJ) [6.45*108–4.56*109]
Y4 Pollutant emissions ( Mg*sec/Nm3) [12, 32]
Y5 Thermal stress [8, 3939]

TABLE 3. Fuzzy sets

Fuzzy Membership Variable Weight wi t c Goal
set function µFi(yi)
F1 1-Sigmoid Y1 0.2 8000 110000 Min
F2 1-Sigmoid Y2 0.1 800 16200 Min
F3 Sigmoid Y3 0.1 0.4*109 1.8*109 Max
F4 1-Sigmoid Y4 0.3 2 25 Min
F5 1-Sigmoid Y5 0.3 20 150 Min

and during this interval the steam turbine starts with the rotor reaching the desired velocity. Then
the turbines have to reach at time t5 the normal power load regime (270 MW for the gas turbine)
according to two load gradients which are variable depending on the machine.

In Tables 1 and 2, we report the process control variables (input) and the output variables to be
monitored.

Therefore, the problem we are tackling has four inputs and five outputs and in order to optimize
the overall start-up operations, the following objectives need fulfilling:

• minimize time
• minimize fuel consumption
• maximize energy production
• minimize pollutant emissions
• minimize thermal stress

3 Fuzzy sets definition

In this paragraph, we describe how with the support of the process experts, we defined the single
fuzzy sets (Table 3) over the output variables (Table 2) and how we composed them in order to get a
cost function ranging in the lattice [0,1]. Therefore, we got an index representing the global start-up
performance (0 = bad, 1 = excellent).
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Where c and t are the parameters of the sigmoid function

Sigmoid= 1

1+e
c−x

t

(3.1)

Different membership functions with several parameter settings have been tried out over a data
set of diverse starting conditions where, for each of these, each objective was marked by the experts.
Thus, the choice reported in the previous table is the one which best fitted, after fine manual parameter
tuning, the marks given by the experts.

Consequently, the fuzzy sets have been composed through a weighted sum and the result is a
fuzzy set whose membership function is

µ(y1,y2,y3,y4,y5)=w1µF1(y1)+w2µF2(y2)+w3µF3(y3)+w4µF4(y4)+w5µF5(y5) (3.2)

This composition has been finally chosen because we found out that for this problem the intersec-
tion was too restrictive (only one objective with a low value is sufficient to severely affect the whole
performance) and the union was too lazy (only one objective with a high value is sufficient to have
a high global performance). Thus, we have eventually applied the weighted sum operator, which
is an intermediate composition between intersection and union, which gives a global performance
proportional to the optimality degree of each single objective.

The values of the weights wi has been given by the process experts according to the importance
of the corresponding objectives.

4 Evolutionary optimization

With the class of evolutionary computation (EC) we refer to a population-based stochastic opti-
mization process inspired by the principles of natural evolution. EC have been successfully used in
many optimization problems, their ability to perform a parallel search exploring the solution space
and exploiting the best solutions found is critical for the most complex problems. In this case the
genotype represents a start-up sequence encoding the variables described in Table 2.

We implemented a real-coded genetic algorithm (GA) with a number vector’s genotype repre-
senting the normalized process input variables. We choose real values for encoding because of the
continuous search space and in this way we avoided the discretization due to binary coding. The
normalization of the input variables, between 0 and 1, is to make mutation operators parameters
heterogeneous given that the input variables differ strongly in magnitude (see Table 2).

A Gaussian mutation operator is implemented adding to the genotype genes a random value
following a normal distribution, i.e.:

gi
m =gi +N (0,σ) (4.1)

where gi is the i-th gene and σ is the standard deviation of the gaussian distribution. We used a
Uniform Crossover with a binary Tournament Selection and then as fitness function we use the fuzzy
function shown in (3.2), which is within the range [0, 1]. Two termination criteria have been set for
this algorithm: maximum number of generations and a target fitness value.
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TABLE 4. GA parameters

Parameter Value
Population Size 20
Mutation Rate 0.5
Mutation Amplitude 0.1
Crossover Rate 0.9
Tournament Pool Size 2
Maximum number of generations 1000
Target fitness value 0.83

FIG. 3. Fitness evaluation.

The selected algorithm parameters after a set of experimentations are shown in Table 4.
Fitness is calculated according to (3.2) using a software simulator (Figure 3):

5 Experimentation

Experimentation has been carried out by means of a software simulator carried out by AnsaldoEn-
ergia1, a Finmeccanica company, which is the Italian leading thermoelectric power plants producer.

We performed 400 runs of the algorithm using the GA interfaced with the software simulator used
to compute the fitness function value. In Figure 4 it is shown the distribution of the best solutions
fitness values at the end of the experimentations and the same for the number of generations.

The average number of generations is 414, i.e. the number of function calls is 8280 because at
each generation a number of fitness evaluations equal to the population size is performed.

In Table 5, we compare the solution given by the experts (Exp) to the optimal one (Opt) given by
the proposed approach.

The nominal variation of the last row is calculated as

Y opti −Y expi

maxi−mini
∗100 (5.1)

where Yopti is the outcome of the optimal solution, Yexpi the outcome of solution given by human
experts, maxi and mini are the maxima and minima operating range values of the five output variables
(Table 2).

At first glance, it is clear that from these results the overall start-up performance has been remark-
ably improved (from 0.53 to 0.83). This is mainly due to the fuzzy fitness function which properly
combines different conflicting objectives providing the optimization algorithm with the good direc-
tions to search. Without it the EA wouldn’t have achieved the optimal balance among contradictory

1Reference: ivo.torre@aen.ansaldo.it.

 at U
niversity of C

alifornia, San Francisco on N
ovem

ber 21, 2014
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[15:53 14/2/2011 jzr013.tex] Paper Size: a4 paper Job: JIGPAL Page: 7 1–9

Optimizing the start-up operations of CCPPs 7

FIG. 4. GA: Distribution of fitness values (left) and number of generations (right).

TABLE 5. Output comparison

Y1 Y2 Y3 Y4 Y5 Performance
Exp 21070 143557 2.5*109 25 10 0.53
Opt 14800 99282 1.5*109 21.6 54 0.83
Nominal Variation −35% −25% −25% −17% +1.0% +0.3

goals. Moreover, it would be interesting to compare the proposed EA with the fuzzy performance
to other optimization techniques with the same fitness definition as well as with a performance
modelled by crisp sets.

In particular, the solution found cuts considerably down the start-up time (−35%), consumption
(−25%) and emissions (−17%) keeping the thermal stress very low. This solution has been actually
acknowledged by the experts as the optimal balance for the start-up problem.

At present, the main drawback of the proposed method is the use of a complex software simulator
each time the GA performs a fitness evaluation. Thus, the execution of the algorithm turns out to
be very time consuming because the number of fitness evaluations, needed to explore the solution
space and find the optimal solutions, can be very high. In applications where fitness function is
particularly time-consuming, like the one in this work, the solution can be that of carrying out
fitness approximation methods.

6 Conclusion

In this article, we presented a study on the application of soft computing methods for the overall
optimization of the CCPPs start-up. Our method is based first on the fuzzyfication of the output
process variables, in order to get a fitness value in the lattice [0,1] providing the effectiveness (zero
bad, one excellent) of the given solution (start-up regulations), and then to run a genetic algorithm
in order to find out the optimal solution.
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In the problem we faced, human operators are able to optimize only one objective, the one which is
the most critical (in CCPPs this is the thermal stress), but the problem is multi-objective. Therefore,
the main novelty of the work is the proposed application of fuzzy sets in order to handle all the
objectives and thus to optimize the global start-up operations.

We tested the methodology on a software simulator and we found a solution (0.83) which remark-
ably improves the solution given by the process experts (0.53). The main reason for this is mainly
due to the fact that the fuzzy fitness definition keeps into account all the objectives and the solution
found has been acknowledged by the experts to be the optimal balance among conflicting objectives.

As future work, we are willing to compare the proposed approach to multi-objective genetic
algorithms as well as to carry out fitness approximation methods in order not to use the complex
software simulator that we used for this experimentation.
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