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combinations of SPSs are obtained by mixing ENSEM-
BLES and APCC/CliPAS models and that only a limited 
number of SPSs is required to obtain the maximum perfor-
mance. The number and selection of models that perform 
better is usually different depending on the region/phenom-
enon under consideration so that all models are useful in 
some cases. It is shown that the incremental performance 
contribution tends to be higher when adding one model 
from ENSEMBLES to APCC/CliPAS MMEs and vice 
versa, confirming that the benefit of using MMEs ampli-
fies with the increase of the independence the contributing 
models. To verify the above results for a real world appli-
cation, the Grand ENSEMBLES-APCC/CliPAS MME is 
used to predict retrospective energy demand over Italy as 
provided by TERNA (Italian Transmission System Opera-
tor) for the period 1990–2007. The results demonstrate the 
useful application of MME seasonal predictions for energy 
demand forecasting over Italy. It is shown a significant 
enhancement of the potential economic value of forecasting 
energy demand when using the better combinations from 
the Grand MME by comparison to the maximum value 
obtained from the better combinations of each of the two 
contributing MMEs. The above results demonstrate for the 
first time the potential of the Grand MME to significantly 
contribute in obtaining useful predictions at the seasonal 
time-scale.

Keywords Seasonal climate prediction · Multi-model 
ensembles · Coupled general circulationmodels · Energy 
application

Abstract Multi-model ensembles (MMEs) are powerful 
tools in dynamical climate prediction as they account for 
the overconfidence and the uncertainties related to single-
model ensembles. Previous works suggested that the poten-
tial benefit that can be expected by using a MME amplifies 
with the increase of the independence of the contributing 
Seasonal Prediction Systems. In this work we combine the 
two MME Seasonal Prediction Systems (SPSs) indepen-
dently developed by the European (ENSEMBLES) and by 
the Asian-Pacific (APCC/CliPAS) communities. To this 
aim, all the possible multi-model combinations obtained by 
putting together the 5 models from ENSEMBLES and the 
11 models from APCC/CliPAS have been evaluated. The 
grand ENSEMBLES-APCC/CliPAS MME enhances sig-
nificantly the skill in predicting 2m temperature and pre-
cipitation compared to previous estimates from the contrib-
uting MMEs. Our results show that, in general, the better 
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1 Introduction

Two well-validated multi-model ensemble (MME) Sea-
sonal Prediction Systems have been independently com-
piled by the European and by the Asian-Pacific communi-
ties. The Climate Prediction and its Application to Society 
(CliPAS) project sponsored by the Asian-Pacific Economic 
Cooperation Climate Center (APCC) assembled a well-
validated MME prediction system by putting together 14 
independent modeling tools from the Asian-Pacific com-
munity  (Wang et  al. 2009). The five “State-of-the-Art” 
coupled models developed in Europe in the framework 
of the European Commission FP7 project ENSEMBLES 
composed the second MME  (Weisheimer et  al. 2009; 
Alessandri et  al. 2011b). Much of the prediction systems 
participating in CliPAS and in ENSEMBLES have also 
joined the multi-model operational efforts that are being 
established to provide real-time seasonal forecasts by the 
EUROpean Seasonal to Inter-annual Prediction  (EURO-
SIP; Vitart et  al. 2007), the North American MultiModel 
Ensemble  (NMME; Kirtman et  al. 2014) and the APCC 
operational seasonal MME   (APCC MME; Min et  al. 
2017). Such operational development follows from the rec-
ognition that the MME strategy is indeed a viable approach 
for improving performance in ENSO (e.g. Jin et al. 2008), 
monsoon  (e.g. Wang et  al. 2008) and teleconnection  (e.g. 
Lee et al. 2011) prediction and for adequately resolve fore-
cast uncertainty (e.g. Kirtman et al. 2014). Previous works 
showed that MMEs are powerful tools in dynamical cli-
mate prediction  (Palmer et  al. 2004; Weisheimer et  al. 
2009) and that they are more effective in enhancing perfor-
mance with the increase of the independence of the con-
tributing Seasonal Prediction Systems  (SPSs; Wang et  al. 
2009; Alessandri et al. 2011b). The multi-models get their 
performance from the skill of the contributing models, so 
that MME skill is generally proportional to the mean skill 
of the individual models  (Yoo and Kang 2005). However, 
the relation between single-model averages and MME skill 
is not linear and the multi-model performance is superior 
to the average of the Single-Model Ensembles (SMEs). As 
explained in Hagedorn et al. (2005a), this is mainly attrib-
utable to error cancellations and to the nonlinearity of the 
skill metrics applied. The independence of the contribut-
ing models between each other is a prerequisite to obtain 
error cancellations  (Hagedorn et  al. 2005a) and for skill 
amplification to occur (Yoo and Kang 2005). Weigel et al. 
(2008) showed that multi-models act by gradually widen-
ing the ensemble spread (i.e. reducing the over-confidence 
of the single models) and moving the ensemble mean 
toward truth without reducing the potential predictability. 
The increasing diversity of SPSs performance contributes 
to the higher predictive skills of the MME  (Alessandri 
et al. 2011b). Even though all models are based on similar 

approximations of the same dynamical equations, a con-
siderable source of errors in seasonal forecast arises from 
uncertainties due to model formulation, from uncertainties 
due parameterizations of unresolved sub-grid scale pro-
cesses and from uncertainties due to model initialization. 
The idea behind the MME is that if the uncertainties of 
the models are independent from each other, the associ-
ated model errors may be random in nature; thus, a MME 
approach may cancel out the errors contained in individual 
models. In this respect, independence is here intended as a 
synonym of diversity in models formulation, parameteriza-
tion, and initialization.

In order to be useful for decision-making, seasonal cli-
mate predictions need to be probabilistic and the capabil-
ity of probability forecasts to provide valuable information 
to end-users needs to be assessed  (e.g: Richardson 2006). 
At the decision-making level, probability forecasts are 
regarded by virtue of their potential economic value. This 
notion of value is conceptually different from the notion of 
skill in the meteorological sense. In fact, the potential eco-
nomic value cannot be assessed by analyzing meteorologi-
cal variables alone; it depends also on the users economic 
parameters.

By joining together the two independently developed 
MME Seasonal Prediction Systems, this work aims at 
maximising the prediction performance currently attain-
able to obtain robust climate services. Section 2 defines the 
methodology by first describing the grand ENSEMBLES-
APCC/CliPAS multi-model (Sect.  2.1). Then, the evalua-
tion method and the observations/reanalysis data used as 
reference are introduced in Sect.  2.2. The results of this 
paper are discussed in Sect.  3. Section  3.1 compares the 
deterministic performances between the ENSEMBLES 
vs. APCC/CliPAS MMEs and evaluate the skill improve-
ment in the grand ENSEMBLES-APCC/CliPAS MME. 
The maximization of the probabilistic performance using 
the Grand MME predictions is reported in Sect. 3.2, which 
also discusses independence and the incremental contribu-
tions of the single models to the probabilistic performance 
(Sect. 3.2.1). Section 3.3 evaluates the advantages in terms 
of potential economic value (PEV) of using the Grand 
MME in forecasting the energy load over Italy. Finally, in 
Sect. 4 a summary of the main conclusions is given.

2  Method

2.1  The grand ENSEMBLES‑APCC/CliPAS 
multi‑model

The one-tier hindcasts from the Asian Pacific (APCC/Cli-
PAS, Wang et al. 2009; Min et al. 2014; Lee et al. 2015), 
and European  (ENSEMBLES, Weisheimer et  al. 2009; 
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Alessandri et  al. 2011b) communities has been collected 
into a grand MME covering the common 1983–2005 hind-
cast period. The contributing institutions and the references 
of the 11 Seasonal Prediction Systems (SPS) coming from 
APCC/CliPAS and of the five SPSs from ENSEMBLES are 
summarized in Table 1. The Grand MME combinations are 
obtained using equal-weights for each of the SPSs coming 
from ENSEMBLES and from APCC/CliPAS. For APCC/
CliPAS, in addition to the retrospective forecasts from 
the seven one-tier SPSs already described in  Wang et  al. 
(2009), the hindcasts from four further systems have been 
added from member organisations that subsequently con-
tributed to the operational APCC MME (Min et al. 2014; 
Lee et al. 2015). The additional coupled systems, compared 
to Wang et al. (2009), come from South-Korean centers of 
Pusan National University (PNU, Ahn and Kim 2014) and 
APCC  (Jeong et  al. 2008, 2012) and from the Canadian 
Meteorological service  (Merryfield et  al. 2013). All insti-
tutions provide one seasonal prediction system, except for 
the Meteorological Service of Canada, which provides two 
systems based on the version 3 (CanCM3) and the version 
4 (CanCM4) of the Canadian Atmospheric General Circu-
lation Model (AGCM), respectively.

Retrospective forecasts, starting 1 May and 1 November 
are used and the variables of interest, i.e. 2 m temperature 
and precipitation, are interpolated to common latitude-lon-
gitude regular grid (2.5◦ × 2.5◦). For each forecasting sys-
tem, Table 2 reports the original horizontal resolution and 
the number of ensemble members provided. As shown in 
Table 2, the MMEs considered in this work are formed by 
a variable number of ensemble members, ranging from 5 to 
30. All available members made available from each center 

are used when computing ensemble means to be applied in 
assessing correlation skill. The number of ensemble mem-
bers provided by a SPS may affect its probabilistic skill (see 
Palmer et  al. 2004). To avoid this effect, the analysis on 
the probabilistic skill have been carried out considering 
nine members for all SPSs, with the exception of SNU 
and PNU (in Winter) that have a smaller size (Table  2). 
For the SPSs that provided more members, the 9-member 
ensembles considered in the analysis were sampled by tak-
ing members 1–9. We also checked the effect on the results 
when the 9-members are sampled randomly, instead of get-
ting first 9 members, finding no appreciable effects on the 
results of this paper (not shown).

2.2  Evaluation method and data

The performance of 1-month lead seasonal forecasts is 
evaluated by taking the ECMWF ERA-INTERIM reanal-
ysis  (Berrisford et  al. 2009) as the reference for 2m tem-
perature and the Global Precipitation Climatology Pro-
ject (GPCP; Adler et al. 2003) satellite-based observations 
for precipitation. The deterministic skill is measured by 
computing the correlations of the ensemble-mean forecasts 
with the reference data. The probabilistic performance of 
the grand ENSEMBLES-APCC/CliPAS MME is measured 
by the Brier Skill Score  (Wilks 2011). For a more accu-
rate estimation of the probabilistic performances, a leave-
one-out cross-validation procedure has been implemented, 
excluding each target year from the computation of terciles 
and climatological mean of the sample distribution. We 
also compared the results when not using the leave-one-out 
technique and quite interestingly we found no appreciable 

Table 1  Contributing institutions to the grand ENSEMBLES-APCC/CliPAS MME

APCC/CliPAS ENSEMBLES

APCC Asia-Pacific Economic Cooperation Climate Center, S. Korea 
(Jeong et al. 2008, 2012)

ECMWF, European Centre for Medium-Range Weather Forecasts, 
United Kingdom (Balmaseda et al. 2008)

NCEP, National Center for Environmental Prediction, USA (Saha 
et al. 2006)

UKMO, UK-Met Office Met Office, United Kingdom (Collins et al. 
2008)

BMRC, Bureau of Meteorology Research Center, Australia (Zhong 
et al. 2005)

MF, Meteo France. France (Mélia 2002; Daget et al. 2009)

PNU, Pusan National University, S. Korea (Ahn and Kim 2014) INGV-CMCC, Centro Euro-Mediterraneo per i Cambiamenti Climatici, 
Italy (Alessandri et al. 2010)

MSC, Meteorological Service of Canada, Canada (CANCM3, 
CANCM4) (Merryfield et al. 2013)

IFM-GEOMAR, Leibnitz Institute of Marine Sciences at Kiel Univer-
sity, Germany (Keenlyside et al. 2005)

NASA, National Aeronautics and Space Administration, USA (Vintz-
ileos et al. 2003)

SNU, Seoul National University, S. Korea (Kug et al. 2008)
UH, University of Hawaii, USA (Fu and Wang 2004)
GFDL, The Geophysical Fluid Dynamics Laboratory , USA (Zhang 

et al. 2007)
FRCGC, Frontier Research Center for Global Change, Japan (Luo 

et al. 2005)
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Table 2  Model configuration, resolution, ensemble members provided and initialization strategy of each institution (see reference papers in 
Table 1)

Institute AGCM OGCM Members Initialization

(JJA/DJF) Atmos. and Land Ocean

APCC/CLiPAS
   APCC CAM3 POP1.3 10 Coupled atmos-ocean climate 

simulations with SST restored 
to observations

Derived from NCEP ocean rea-
nalysis (GODAS)

(T85/L26) (gx1v3/L40)
   NCEP GFS MOM3 20 NCEP CFS Data Assimilation NCEP ocean reanalysis (GODAS)

(T126/L64) (0.33° × 1°/L40)
   BMRC BAM3.0d ACOM2 30 AMIP-type simulation with 

forced SSTs
Off-line ocean analysis. NCEP 

surface fluxes except for wind-
stress from FSU

(T47/L17) (0.5◦–1.5◦ × 2◦/L25)
   PNU CCM3 MOM3 10/5 AMIP-type simulation with 

forced SSTs
Off-line ocean analysis. NCEP 

surface fluxes
(T42/L18) (0.7◦–2.8◦/L29)

   MSC_CANCM3 AGCM3 OGCM4 10 Canadian Meteorological Cen-
tre atmospheric assimilation

SST and sea-ice analysis (surface 
assimilation). Below surface 
3D analysis based on NCEP 
GODAS

(T63/L31) (0.94◦ × 1.41◦/L40)
   MSC_CANCM4 AGCM4 OGCM4 10 Canadian Meteorological Cen-

tre atmospheric assimilation
SST and sea-ice analysis (surface 

assimilation). Below surface 
3D analysis based on NCEP 
GODAS

(T63/L35) (0.94◦ × 1.41◦/L40)
   NASA GEOS5 MOM4 9/11 MERRA atmospheric reanalysis Ocean analysis from GMAO 

ODAS
(288x181/L72) (720 × 410/L40)

   SNU SNU MOM2.2 6 Atmos. and land IC obtained 
from NCEP reanalysis

Off-line ocean analysis

(T42/L21) (0.33◦ × 1◦/L32)
   UH ECHAM4 UH Ocean 10 Coupled atmos-ocean climate simulations with SST and thermo-

cline depth restored to observations
(T31/L19) (1◦ × 2◦/L2)

   GFDL AM2.1 OM3.1/MOM4 10 Coupled atmos-ocean data assimilation
(2◦ × 2.5◦/L24) (0.33◦ × 1◦/L50)

   FRCGC ECHAM4 OPA8.2 9 Coupled atmos-ocean climate simulations with SST restored to 
observations

(T106/L19) (2◦ × 2◦/L31)
ENSEMBLES

   ECMWF IFS CY31R1 HOPE 9 ERA40/ECMWF oper. analysis Ocean analysis forced by ERA-
40/ECMWF oper. analysis 
surface fluxes

(T159/L62) (0.3◦–1.4◦/L29)
   UKMO HadGEM2-A HadGEM2-O 9 ERA40/ECMWF oper. analysis, 

anomaly assimilation for soil 
moisture

Ocean analysis forced by ERA-
40/ECMWF oper. analysis 
surface fluxes

(N96/L38) (0.33◦–1◦/L20)
   MF ARPEGE4.6 OPA8.2/GELATO 9 Atmos. nudging to ERA-40/

ECMWF oper. analysis
Ocean analysis forced by ERA-

40/ECMWF oper. analysis 
surface fluxes

(T63/L31) (2◦/L31)
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overestimation of the scores (not shown). All the calcula-
tions are performed using the forecast anomalies, computed 
for each contributing model by removing the corresponding 
climatology from the original ensemble forecasts. A similar 
process is applied to the verification reanalysis/observation 
data.

To assess the potential usefulness of probabilistic fore-
casts, we applied the PEV metric by assuming a cost/loss 
model related to a binary event, as described in Richardson 
(2011). Electricity demand data used here have been pro-
vided by TERNA (Italian TSO, Transmission System Oper-
ator) and they refer to the period 1990–2007. The hourly 
data provided by TERNA are subdivided in eight regions 
over Italy: North-West, North, North-East, North-Center, 
Center, South, Sicily and Sardinia. The data have been 
aggregated over the Italian domain and, as we are focus-
ing on summer demand, the monthly demand has been cal-
culated summing up all the hourly-loads for each month. 
Only June and July have been retained, while August has 
not been included due to industrial closure. In fact during 
August industrial facilities usually close in Italy for one or 
two weeks reducing electricity demand independently of 
temperature. Given that during 1990–2007 the electricity 
demand was steadily increasing, a trend removal has been 
performed by fitting a second-order regression model for 
each region and then computing the deviation from the fit 
(i.e. regression residuals) as described in  De Felice et  al. 
(2015).

3  Results

3.1  ENSEMBLES vs. APCC/CliPAS: independence 
and summation of deterministic performance

The ENSEMBLES and APCC/CliPAS MMEs are com-
pared and the gain of using the grand ENSEMBLES-
APCC/CliPAS MME in terms of deterministic performance 
is assessed in this section. Here, the results for surface 
air temperature in boreal summer (June–July–August; 

hereinafter JJA) are reported. Note that the results for JJA 
are also well representative of the performance of the win-
ter season, therefore in the following only JJA is reported 
for brevity.
Figure 1a shows the correlation skill of the ENSEMBLES 
MME for 1-month lead JJA seasonal forecasts of 2m tem-
perature. The results show that the skill tends to be concen-
trated over tropical Pacific, and from there tends to irradi-
ate toward the whole tropical belt and extratropics. Other 
than Pacific, good correlation skill is found over northern 
Indian Ocean, Northern China and Mongolia, northwestern 
Atlantic and Euro-Mediterranean basin. The largest perfor-
mance tends, however, to be confined over the ocean. The 
skill difference between ENSEMBLES and APCC/Cli-
PAS and its frequency distribution are reported in Fig. 1b, 
c, respectively. Overall, the global scale performance of 
APCC/CliPAS and ENSEMBLES are comparable (Fig. 1c) 
but they show regional differences (Fig. 1b). The skill dif-
ference between APCC/CliPAS and ENSEMBLES dis-
plays quite a patchy pattern, with positive differences in 
some regions, which tend to be compensated by negative 
values in other areas. For instance, APCC/CliPAS displays 
increased correlation over northern Eurasia, some parts 
of North and South Atlantic and equatorial eastern Indian 
oceans. On the other hand ENSEMBLES tends to be better 
over the Euro-Mediterranean, northeastern China, northern 
Indian subcontinent and northwestern tropical Pacific. The 
regional differences between APCC/CliPAS and ENSEM-
BLES MMEs give evidence of the independence of the 
models contributing to the two MMEs. As discussed in pre-
vious works, the independence of the contributing models 
between each other is a prerequisite to obtain skill ampli-
fication and error cancellations in MMEs (Hagedorn et al. 
2005b; Alessandri et al. 2011b). Therefore it is expected an 
increase of the performance by collecting APCC/CliPAS 
and ENSEMBLES into a grand-MME.

Figure  2 shows the skill difference between the grand 
ENSEMBLES-APCC/CliPAS and ENSEMBLES MMEs. 
The grand MME improves in much of the areas even if 
in some regions ENSEMBLES still appears to perform 

Table 2  (continued)

Institute AGCM OGCM Members Initialization

(JJA/DJF) Atmos. and Land Ocean

   INGV-CMCC ECHAM5-SILVA OPA8.2 9 AMIP-type simulation with 
forced SSTs

Ocean analysis forced by ERA-
40/ECMWF oper. analysis 
surface fluxes

(T63/L19) (2◦/L31)
   IFM-GEOMAR ECHAM5 MPI-OM1 9 Coupled atmos-ocean climate simulations with SST restored to 

observations
(T63/L31) (1.5◦/L40)
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slightly better (Fig.  2a). Overall, ENSEMBLES-APCC/
CliPAS is seen to improve skill in the majority of the 
grid points as shown by the distribution of the point-by-
point differences (Fig. 2b). The improvement in the grand 
ENSEMBLES-APCC/CliPAS MME is found both on all 
(sea and land; red) and on land only (light blue) grid points 
as indicated by the vertical dashed lines in Fig. 2b, repre-
senting the average value of the differences distribution. 
As summarized in Table 3, the averaged improvements are 

similar with respect to both APCC/CliPAS and ENSEM-
BLES. Overall, considering the average of sea and land 
grid-points, the Grand MME improves by 5% compared 
to APCC/CliPAS and ENSEMBLES in both DJF and JJA. 
The improvement tends to be higher over land-only grid 

Fig. 1  1-month-lead boreal summer (JJA) 2m Temperature a correla-
tion of ENSEMBLES with ERA-INTERIM, b ENSEMBLES minus 
APCC/CliPAS correlation difference and c frequency distribution of 
the ENSEMBLES minus APCC/CliPAS correlation differences. Dot-
ted grid points in a, b did pass a significance test at 5% level

◂

Fig. 2  a Grand ENSEMBLES-APCC/CliPAS minus ENSEMBLES 
MMEs difference of the correlation for JJA 2m-temperature seasonal 
forecasts at one month of lead time. b Distribution of the point-by-
point differences between the grand ENSEMBLES-APCC/CliPAS 

and ENSEMBLES both on land (light blue) and on all (sea and land) 
grid points (red). Vertical lines represent the average value of the dis-
tributions

Table 3  The ratio (%) of improvement in the globally-averaged cor-
relation (sea and land grid points) for the Grand MME compared with 
(left) ENSEMBLES and (right) APCC/CliPAS

Brackets indicate results for land-only grid points

Season GrandMME vs 
ENSEMBLES

GrandMME vs 
APCC/CliPAS

t2m DJF 5% (5%) 5% (6%)
JJA 5% (7%) 5% (8%)
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points: it is 6% in DJF and 8% in JJA against APCC/Cli-
PAS, while the land improvement, compared with ENSEM-
BLES, amounts to 5% in DJF and 7% in JJA.

3.1.1  Optimal combination of the ENSEMBLES 
and APCC/CliPAS systems for ensemble‑mean 
predictions

Combining the two MME Seasonal Prediction Systems 
independently developed by the European and by the 
Asian-Pacific communities makes it possible to assess 
the maximum level of skill that is currently attainable for 
seasonal predictions. To this aim, all the possible MME 
combinations (

∑
k=1,16 C

k
16

= 65535) have been evaluated 
by putting together the 5 models from ENSEMBLES 
and the 11 models from APCC/CliPAS and using equal-
weights for each SPS in the Grand MME. Figure 3 shows 
the Pattern Correlation Coefficients (PCCs) computed 
over the (a) Northern Middle Latitude (NML; 25N–75N), 
(b) Tropics (25S–25N) and (c) Southern Middle Latitude 
(SML; 75S–25S) regions as a function of the number of 
models and obtained with all the possible combinations 
of the models available. Blue filled-circles represent the 
cases in which the combinations are obtained with only 
models from ENSEMBLES, while red filled-circles are 
for the combinations of the APCC/CliPAS models only. 
The combinations mixing models from both APCC/Cli-
PAS and ENSEMBLES are the green filled circles. For 
both temperature (Fig.  3) and precipitation (Fig.  4), the 
combinations from the grand ENSEMBLES-APCC/
CliPAS MME that mix models from ENSEMBLES and 
APCC/CliPAS provide the larger values of PCCs. The 
maximum performance obtained by mixing ENSEM-
BLES and APCC/CliPAS models (green dashed lines) 
considerably improves what would be obtained by 
ENSEMBLES only (blue dashed line) or by APCC/Cli-
PAS only (red dashed lines) in all domains. It should be 
noted here that there might be a higher chance of get-
ting higher scores simply as a consequence of the larger 
number of model combinations in the Grand MME. An 
ad-hoc significance test has been implemented to verify 
that the improvement is indeed related to mixing models 

from independent sources. The null hypothesis of getting 
as high or higher improvements as a consequence of the 
larger number of model combinations has been tested 
through a monte carlo method by re-shuffling the mod-
els and choosing randomly the 5-model group (synthetic 
ENSEMBLES MME) and the 11-model group (synthetic 

Fig. 3  a NML (25N–75N), b tropics (25S–25N) and c SML (75S–
25S) Pattern Correlation Coefficients (PCCs) for boreal summer 
(JJA) 2m temperature computed as a function of the number of mod-
els obtained with all the possible 65535 combinations of the mod-
els from ENSEMBLES (5 models) and APCC/CliPAS (11 models). 
Blue (red) colour represent the cases in which the combinations are 
obtained with only models from ENSEMBLES (APCC/CliPAS), 
while green colour is for the combinations of the models from both 
APCC/CliPAS and ENSEMBLES. The average of the combinations 
(filled circles) in each category is reported with the diamonds while 
the maximum PCC for each type are the dashed horizontal lines 

▸
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APCC/CliPAS MME) from the Grand 16-model pool 
(1000 repetitions). The 5th and 95th percentiles of the 
null hypothesis distribution are reported in Table  4 

together with the actual improvement obtained through 
the Grand MME (i.e. Maximum Grand MME minus Max-
imum ENSEMBLES or APCC/CliPAS performances). It 
is shown that, with the only exception of precipitation 
over Southern Middle Latitudes, the null hypothesis can 
be rejected at the 5% significance level, therefore indicat-
ing that the improvement of the Grand MME is at least 
in part a consequence of mixing models from the two 
diverse groups. For all regions, the performance initially 
increases by adding models to the ensembles, while tend-
ing to level off when passing a given threshold of mod-
els after which the skill decreases for the combinations 
of more models. The optimal number of models required 
to maximise performance is different depending on the 
region and variable under consideration. The optimal 
combination of ENSEMBLES-APCC/CliPAS models to 
forecast temperature scores a maximum PCC of 0.359 
in the NML, 0.520 in the Tropics and 0.423 in the SML. 
This improves significantly (5% significance level) over 
what was achievable by using ENSEMBLES only (0.313 
for NML, 0.492 for Tropics and 0.382 for SML) and 
APCC/CliPAS only (0.327 for NML, 0.496 for Trop-
ics and 0.352 for SML). For the Tropics, the maximum 
performance tends to level off when adding more than 
4 models and with the best combination composed by 5 
models obtained by mixing ENSEMBLES and APCC/
CliPAS. Then, the skill decreases steadily for the combi-
nations of more than 6 models. Middle latitudes display 
a larger number of models required to maximise PCC for 
temperature and with the best combination composed by 
8 models over both NML and SML. For precipitation, 
the mix of 7 ENSEMBLES and APCC/CliPAS models is 

Fig. 4  Same as Fig. 3 but for precipitation

Table 4  Grand-MME improvements of the maximum PCC by com-
parison with the maximum attainable with ENSEMBLES-only or 
APCC/CliPAS-only (corresponding to differences between the green 
and the maximum of red and blue dashed lines in Figs. 3, 4)

The 5th and 95th percentiles of the null hypothesis distribution of 
getting as high or higher improvements just as a consequence of the 
larger number of model combinations are reported (see text for details 
on the monte carlo method used). For each domain, asterisks indi-
cate that the Grand-MME improvements are significant (i.e. the null 
hypothesis can be rejected) at the 5% significance level

Variable Area Null hypothesis distribu-
tion

Actual 
improve-
ment

p05 p95

NML 0.006 0.030 0.032*
t2m TROPICS −0.001 0.021 0.024*

SML 0.008 0.040 0.041*
NML −0.000 0.020 0.023*

prec TROPICS 0.005 0.023 0.025*
SML 0.002 0.014 0.011



 A. Alessandri et al.

1 3

required to obtain the maximum skill over Tropics. On 
the other hand, over NML the maximum PCC perfor-
mance for precipitation is obtained with only 5 models, 
while 9 models are required for SML.

It is noteworthy that the performance obtained by simply 
combining all models in ENSEMBLES, APCC/CliPAS, 
or the Grand MMEs (diamonds) are considerably lower 
in all domains compared to the optimal combinations of 
the grand MME models. The democratic inclusion of all 
models in ENSEMBLES and APCC/CliPAS is also out-
performed by the optimal combination of a limited num-
ber of models in each group, with the only exception of 
ENSEMBLES in the SML domain. In fact, the ensemble 
average of all ENSEMBLES systems also coincides with 
the maximum performance considering all the combina-
tions of the five ENSEMBLES models over SML (Figs. 3c, 
4c). Together with the fact that the ENSEMBLES MME 
is composed by a smaller number of models, this appears 
to be related to the smaller spread in the performance of 
the ENSEMBLES models compared with APCC/CliPAS 
(Figs.  3c, 4c). It follows that none of the models from 
ENSEMBLES behaves as negative outliers such that to 
degrade the performance of the ensemble combinations.

Several works showed that the ability of dynamical 
models in simulating Sea Surface Temperature (SST) mean 
state over tropical regions can impact the skill in predict-
ing the interannual anomalies of temperature and precipita-
tion  (Lee et  al. 2010; Alessandri et  al. 2011a). To evalu-
ate the relationship between climatological SST bias over 
Tropics and the performance of the MME combinations, 
the PCC for temperature (Fig. 5) and precipitation (Fig. 6) 
are displayed for all the MME combinations as a function 
of the respective SST bias over the Tropics. The linear fit of 
all the MME combinations is indicated when significance 
of the slope of linear relationship is verified at the 5% level 
using a Fisher parametric test. Indeed, fitted lines in Figs. 5 
and 6 show a clear relationship between performance and 
tropical SST bias over both Tropics itself (panel b) as well 
as over NML (panel a) and SML (panel c) regions. The 
only exception is for the ENSEMBLES MME over NML, 
where the relationship between SST bias and precipitation 
skill is not statistically significant at 5% level (Fig. 6a). The 
present analysis confirms that realistic mean state of SST 
over the Tropics is a key aspect for the models to better 
simulate/predict interannual tropical climate variability as 
well as related teleconnections over middle latitudes.

Fig. 5  PCCs for 2m temperature vs. Mean Tropical SST bias for a 
NML, b tropics and c SML obtained with all the possible combina-
tions of models coming from APCC/CliPAS and ENSEMBLES 
MMEs. The linear fit of all the MME combinations is reported when 
significance of the slope of linear relationship is verified at the 5% 
level using a Fisher parametric test

▸
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3.2  Maximization of the probabilistic performance 
using the grand MME predictions

The ENSEMBLES and APCC/CliPAS are compared and 
the gain of using the grand ENSEMBLES-APCC/CliPAS 
MME in terms of overall probabilistic accuracy is evalu-
ated. As discussed in Sect. 2.1, this analysis has been per-
formed considering only nine ensemble members for each 
SPS to exclude the influence of ensemble size on the proba-
bilistic skills. Here, the results for above-normal (i.e., above 
upper tercile of the sample distribution) 2m temperature 
and precipitation in boreal summer (June–July–August; 
hereinafter JJA) are reported. Note that the results for 
above-normal conditions (i.e., above upper tercile of the 
sample distribution) are similar to those for below-normal 
cases (not shown). Similarly, the results for JJA are well 
representative of the performance of the winter season, 
therefore in the following only JJA is reported for brevity.

Figure 7a shows the maximum Brier Skill Score (BSS) 
of 1-month lead 2m temperature seasonal forecasts started 
May 1st that is achievable using the grand ENSEMBLES-
APCC/CliPAS MME. The BSS is obtained for each grid 
point by getting the maximum value of all the possible 
65535 combinations using the 5 models from ENSEM-
BLES and the 11 models from APCC/CliPAS. The results 
show that the probabilistic forecast skill tends to be concen-
trated over tropical Pacific quite similarly to the determin-
istic score (see Sect. 3.1). This confirms that much of the 
skill of present dynamical seasonal climate forecasts comes 
from their ability in predicting ENSO (e.g. Alessandri et al. 
2011b; Lee et  al. 2011). The high skill tends to irradiate 
toward the whole tropical belt and to the extratropics from 
the ENSO region with largest performances located over 
oceans. The BSS percent gain obtained using the grand 
ENSEMBLES-APCC/CliPAS MME by comparison with 
the maximum performance of the contributing ENSEM-
BLES or APCC/CliPAS MMEs (whichever is larger at 
each grid point) is reported in Fig. 7b for JJA. A consider-
able improvement of the grand MME is shown, with broad 
enhancements exceeding 20% over mid to high latitudes. It 
is found a remarkable BSS increases over land areas includ-
ing China, Middle East, Europe and northern North Amer-
ica in JJA (Fig.  7b), and including Africa, Europe, Asian 
boreal forests, and mid-latitude North America in DJF 
(Not shown). As summarised in Table 5 (upper rows), the 
area averaged improvement of BSS for 2m temperature in 
boreal summer (winter) is 8.4% (7.0%) over Tropics, 10.6% 
(8.6%) over NML and 10.5% (10.3%) over SML.

The maximum BSS for precipitation of the 1-month 
lead seasonal forecasts started May 1st that is achiev-
able using the grand ENSEMBLES-APCC/CliPAS MME 
is reported in Fig. 8a. It is shown that, also for precipita-
tion, the BSS maximized using the grand MME is positive 

Fig. 6  Same as Fig. 5 but for precipitation
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almost everywhere, therefore being better than climatologi-
cal non-informative forecasts. Consistently with the results 
for 2m temperature, the better BSS for precipitation is con-
centrated over equatorial Pacific and from there it irradiates 
toward the whole tropical belt and to some extent also to 
the extra-tropics. A considerable improvement of the grand 

MME is shown, with BSS increases exceeding 30% over 
land in Europe, Middle East and South East Asia in JJA 
(Fig.  8b), and in Africa, Europe and Asian boreal forests 
in DJF (not shown). Table  5 (lower rows) further reports 
the averaged improvements in forecasting precipitation 
for boreal summer (winter): the averaged % improvement 
amounts to 9.8 (10.4) over Tropics, 10.8 (11.5) over NML 
and 10.1 (10.9) over SML.

3.2.1  Incremental contributions of the single models 
to probabilistic performance

To characterize the contribution of each model to proba-
bilistic performance, we compute the incremental changes 
in BSS of including a given model in each combination 
where it is not already present (sometimes reported in the 
literature as marginal changes, e.g. Wilks 2011). The aver-
aged percent-incremental change of adding a given model 
(j) to all 32767 possible combinations (�Combs; Eqs.  1–2) 
where it is not already included (hereinafter incremental 

Fig. 7  a Maximum Brier Skill 
Score (BSS) that is attainable 
for 1-month lead seasonal 
forecasts started May 1st (JJA) 
using the grand ENSEMBLES-
APCC/CliPAS MME. The 
BSS is obtained for each grid 
point by getting the maximum 
value of all the possible 65535 
combinations of the 5 models 
from ENSEMBLES and the 11 
models from APCC/CliPAS. 
b BSS % gain by using the 
grand ENSEMBLES-APCC/
CliPAS MME by comparison 
with the maximum performance 
of ENSEMBLES and APCC/
CliPAS

Table 5  The ratio (%) of improvement of the brier skill score aver-
aged over NML (25N–75N), Tropics (25S–25N), and SML (75S–
25S) for the grand MME compared with the maximum performance 
of the contributing ENSEMBLES or APCC/CliPAS MMEs (which-
ever is larger at each grid point) for (upper rows) 2m temperature and 
(lower rows) precipitation

Variable Area JJA DJF

NML 10.6 8.6
t2m TROPICS 8.4 7.0

SML 10.5 10.3
NML 10.8 11.5

prec TROPICS 9.8 10.4
SML 10.1 10.9
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contribution of a model; Δmj in Eq. 1) is reported in Figs. 9 
and 10 for temperature and precipitation, respectively.

where Δmi,j is the marginal improvement of adding the 
model (j) to a given combination (i) of models, 

(|�G−{j}|
k

)
 

denotes the set of all k-combinations of �G − {j}, NG = 16 
the total number of elements in the Grand ENSEMBLES-
APCC/CliPAS set of models (�G), and the vertical bars | | 
on each side denotes the number of elements (cardinality) 
of a set.

In all cases, either considering NML (Figs.  9a, 10a), 
Tropics (Figs. 9b, 10b) or SML (Figs. 9c, 10c), the major-
ity of models appear to add performance to the MMEs. 
Remarkably, all models are useful in improving the perfor-
mance and appear to provide added skill at least for some 

(1)Δmj =
1

|�Combs|
∑

i∈�Combs

Δmi,j

(2)

�Combs =

{(
|�G − {j}|

k

)
,∀k = 1, 2,… ,NG − 1 in �G − {j}

}

regions and variables. On the other hand, a limited number 
of models may perform not well in some cases and we may 
want to remove them from the ensembles when degrading 
the multi-model performance. The fraction of the global 
grid points for which each model is necessary to maximise 
the performance is reported in Fig. 11. Indeed, even if some 
models are better than others, all contribute to the maximi-
sation of the skill in more than 10% of the grid points for 
both temperature (Fig.  11a) and precipitation (Fig.  11b). 
Note that we restricted the analysis only to the grid points 
where the skill is sufficiently good after the maximiza-
tion is performed; a BSS threshold of 0.3 is considered in 
Fig. 11 and the effect of changing the threshold to 0.1, 0.2, 
and 0.4 have been as well checked finding no appreciable 
changes in the outcomes of this analysis (not shown).

To evaluate the relative independence between the two 
MMEs, we compare the relative effect of including each 
model into the combinations of SPSs either solely from the 
same or solely from the other MME. Specifically, the incre-
mental skill of adding models from one MME to all possi-
ble combinations composed exclusively by models from the 
other MME are compared with the respective incremental 

Fig. 8  Same as Fig. 7 but for 
precipitation
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skill of adding to combinations of models solely from the 
same MME. We therefore compute the normalized incre-
mental contribution of adding APCC/CliPAS or ENSEM-
BLES SPSs (added in Eq.  3) to combinations of APCC-
only, ENSEMBLES-only and mixed ENSEMBLES-APCC/
CliPAS MMEs (target in Eq. 3):

where target can either refer to APCC/CliPAS (A), 
ENSEMBLES (E) or Grand MME (G) combinations; 
added stands for either APCC/CliPAS (A) or ENSEMBLES 

(3)Δm
target

added
=

1

|�target

Combs
| × Nadded

∑

j=1,Nadded

∑

i∈�
target

Combs

Δmi,j

Δmj

(4)

�
target

Combs
=

{(
�target − {j}

k

)
,∀k = 1, 2,… ,N∗

target
in �target − {j}

}

(E) and with �target indicating the sets of all SPSs compos-
ing the APCC/CliPAS (�A; with NA = 11), the ENSEM-
BLES (�E; with NE = 5) or the Grand ENSEMBLES-
APCC/CliPAS (�G; with NG = 16) MMEs. Note that 
N∗
E,A,G

= NE,A,G for ΔmE

A
 and ΔmA

E
 while N∗

E,A,G
= NE,A,G − 1 

in all other cases. Figure  12 displays that the normalized 
incremental skill contribution are significantly (10% sig-
nificance level) larger when adding (red) APCC/CliPAS 
or (green) ENSEMBLES to target combinations of (left) 
APCC-only, (right) ENSEMBLES-only and (center) mixed 
ENSEMBLES-APCC/CliPAS. The adimensional ratios 
have at the denominator the total number of combinations 
for which either APCC/CliPAS or ENSEMBLES signifi-
cantly prevail in adding skill for each domain. It is clearly 
shown that the incremental contribution of adding inde-
pendent SPSs to the MMEs leads to significantly larger 
improvements of the skill in most cases over both Tropics 

Fig. 9  Percent incremental contribution of each model to the BSS 
of the prediction of above normal 2m temperature in boreal summer 
(JJA) for a NML, b tropics and c SML obtained by averaging the skill 

change of adding the given model to all 32767 possible combinations 
not already including it
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(Fig.  12b) and middle latitudes (NML, Fig.  12a; SML, 
Fig.  12c). Adding ENSEMBLES (APCC/CliPAS) SPSs 
to the combinations of APCC-only (ENSEMBLES-only) 
models improves significantly (10% significance level) 
more than adding APCC/CliPAS (ENSEMBLES) in 86% 
(95%), 89% (96%), 63% (92%) of the times over NML, 
Tropics and SML, respectively. The above results are con-
sistent with the idea that by mixing independent SPSs from 
European and Asian-Pacific communities can lead to con-
siderable more chance of skill amplification compared to 
adding more models from the same community. Also con-
sistently, the marginal contributions to the mixed ENSEM-
BLES-APCC/CliPAS combinations tends to be balanced, 
with only APCC/CliPAS performing slightly better, in 
particular over SML. This is probably related to the larger 
number of models in APCC/CliPAS, which increases the 
chance to effectively introduce incremental contributions to 
skill from the single-models. It is out of the scope of this 
paper to evaluate the diversity of the models in APCC/

CliPAS with respect to ENSEMBLES in their full com-
plexity. However, from Table 2 it appears clear how APCC/
CliPAS and ENSEMBLES MMEs may add diversity to 
each other both in terms of model formulation/parame-
terization and in terms of initialisation. In particular, it is 
shown that European SPSs tend to use ECMWF reanaly-
ses to start the hindcasts, whereas Asian-Pacific models use 
NCEP reanalyses in most cases. To check that the results in 
Fig. 12 is not just an artifact due to the different size in the 
two MMEs, we repeated the analysis with only 5 models 
in each MME. By selecting randomly 5 models from the 
APCC/CliPAS pool (1000 repetitions), we found consistent 
results and no appreciable effect on the outcomes of this 
analysis (not shown).

Fig. 10  Same as Fig. 9 but for precipitation
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3.3  Potential economic value of electricity load 
forecasts using the grand ENSEMBLES‑APCC/
CliPAS MME

Given the necessity of ensuring the balance between elec-
tricity production and demand, an accurate estimation 
of future seasonal-mean climate state can improve the 
efficiency and reliability of energy management at local 
and national scales. In fact, climate is a crucial factor in 
determining both the generation and demand of electric-
ity (Rothstein and Halbig 2010; Dubus 2010). In Sect. 3.2, 
it was reported that there is a good probabilistic skill 
of the Grand ENSEMBLES-APCC/CliPAS MME over 
Euro-Mediterranean basin. The effectiveness of the Grand 

ENSEMBLES-APCC/CliPAS MME seasonal predictions 
in enhancing electricity demand forecasts is here assessed 
in terms of the Potential Economic Value (PEV; Richardson 
2006) to end users. The PEV measures the economic sav-
ing the user can make using the forecasts when faced to a 
binary (yes/no) event. Here we use the relative savings with 
respect to having only the climatological information (PEV 
= 0) and with the maximum attainable savings that would 
result from perfect deterministic forecasts  (PEV = 1; for 
further details see Richardson 2006). The two binary (yes/
no) events of getting above normal (i.e. above upper tercile 
of sample distribution) and below normal (i.e. below lower 
tercile of sample distribution) electricity loads are con-
sidered in the forthcoming analysis. This notion of value 
is conceptually different from the notion of skill in the 
meteorological sense. In fact, the PEV cannot be assessed 
by analyzing meteorological variables alone, whereas it 
also depends on the users economic parameters. To eval-
uate the usefulness for end-users, in this study we assess 
the PEV of the electricity load forecast obtained using the 
grand ENSEMBLES-APCC/CliPAS MME and discuss the 
maximum PEV attainable as compared to the results using 
either ENSEMBLES or APCC/CliPAS MMEs. The gen-
eralized regression method described in  De Felice et  al. 
(2015) is applied to predict energy loads by exploiting all 
the information in the predictor (i.e. 2m temperature fore-
casts from the Grand ENSEMBLES-APCC/CliPAS MME). 
The evaluation of the PEV is performed using retrospective 
seasonal predictions of 2m temperature to forecast averaged 
June–July electricity demand during the period 1990–2007. 
All the results shown below have been obtained through a 
leave-one-out cross-validation procedure, where each year 
to be predicted is left out of the model-training sample.

Figure  13a shows the maximum PEV, as a function of 
the cost–loss ratio (C/L), obtained by applying the fore-
casts of electricity loads for the prediction of the binary 
events of getting above normal (upper panel) and below 
normal (lower panel) electricity-load outcomes. The Grand 
ENSEMBLES-APCC/CliPAS MME improves consider-
ably compared to APCC/CliPAS and ENSEMBLES MMEs 
in particular for the upper tercile forecasts. Interestingly, 
the better combinations of APCC/CliPAS models have 
larger PEV compared to the better model combinations of 
ENSEMBLES, even if the performance of the best single-
model is quite similar between the two MMEs for each C/L 
ratio (not shown). Therefore, the larger PEVs in APCC/
CliPAS appear most likely related to the larger number of 
SPSs (11 vs. 5), which may increase the chance to intro-
duce marginal contributions to performance (see sec-
tion 2.1) for most values of the C/L ratio.

Each user is expected to have different C/L ratios and, 
in general, users with lower C/L will benefit more from 
the forecasts information by acting at lower probability 

Fig. 11  Fraction of grid points considering the global domain where 
each model is needed in order to maximise BSS of the prediction of 
above normal a 2m temperature as reported in Fig. 7 and b precip-
itation as reported in Fig.  8. Colors indicate the number of models 
needed to maximize BSS for each relative fraction of grid points
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thresholds. Although little is known about real-world 
costs and losses, economic considerations suggest that 
lower values of C/L are more likely than higher values 
(Roebber and Bosart 1996) as indicated by the studies 
that have applied the simple cost-loss model to finan-
cial decisions  (Thornes and Stephenson 2001). We 
therefore consider the PEV averaged in the 0–0.3 C/L 
range. Remarkably, the PEV averaged over the 0–0.3 
C/L range, reported in Fig. 13b are largely positive. The 
Grand MME improves significantly (5% significance 
level) compared to the contributing ENSEMBLES and 
APCC/CliPAS MMEs. For the upper (lower) tercile 
the Grand-MME improves compared to APCC/CliPAS 
by 16% (15%) and compared to ENSEMBLES by 28% 
(25%).

4  Conclusions

The averaged performance of APCC/CliPAS and ENSEM-
BLES are comparable at the global-scale, but regionally 
the two systems appear to perform differently. The regional 
differences between APCC/CliPAS and ENSEMBLES 
indicate a high degree of independence for the two MMEs, 
which is a prerequisite to obtain skill amplification and 
error cancellations if combined.

Significant improvement of the skill (deterministic and 
probabilistic) is obtained over Tropics, northern middle 
latitudes (NML; 25N–75N) and southern middle latitudes 
(SML; 75S–25S) by collecting and exploiting all models 
into the Grand MME. In general, only a limited number of 
SPSs is required to obtain the maximum performance. The 
number and selection of models that perform better is usu-
ally different depending on the region/phenomenon under 
consideration so that all models are useful in some cases. 

Fig. 12  Normalized marginal 
contribution of (red) APCC/
CliPAS or (green) ENSEM-
BLES models to combinations 
of (left) APCC only, (right) 
ENSEMBLES only and (mid‑
dle) mixed MMEs for a NML, 
b tropics and c SML. The skill 
contributions are computed 
by averaging the skill change 
of adding APCC/CliPAS or 
ENSEMBLES models to all 
combinations (excluding combi-
nations already including model 
to be added) in the APCC-only, 
ENSEMBLES-only and mixed 
categories
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Each model has its own distinction and provides added 
value for some region, season or variable. The analysis of 
all the possible multi-model combinations obtained by put-
ting together the 5 models from ENSEMBLES and the 11 
models from APCC/CliPAS confirms that realistic mean 
state of SST over the Tropics is a key aspect for the models 
in order to be able to simulate/predict interannual climate 
variability. It is shown a relationship between ensemble-
mean performance (Pattern Correlation Coefficient; PCC) 
and tropical SST bias over both Tropics itself as well as 
over NML and SML regions.

The maximum probabilistic performance, obtained by 
identifying the better combination of models from the 
Grand MME, improves considerably over Tropics, NML 
and SML compared with the maximum performance 
attainable by using either the models from APCC/CliPAS 
only or from ENSEMBLES only. The averaged boreal-
summer improvement over Tropics is 8.4% (9.8%) for 
2m temperature (precipitation), while it always exceed 
10% over middle latitudes with 10.6% (10.8%) for NML 

and 10.5% (10.2%) for SML. In agreement with previous 
works suggesting that MMEs can be more effective in 
enhancing performance when combining SPSs developed 
by relatively independent communities, our results show 
that the incremental probability performance contribution 
tends to be higher when adding one model from ENSEM-
BLES to the APCC/CliPAS MME combinations and vice 
versa. Indeed it is shown that by adding ENSEMBLES 
(APCC/CliPAS) SPSs to the combinations of APCC-
only (ENSEMBLES-only) models improves significantly 
(10% significance level) more than adding APCC/CliPAS 
(ENSEMBLES) in 86% (95%), 89% (96%), 63% (92%) 
of the times over NML, Tropics and SML, respectively. 
The increasing diversity of the Grand MME is therefore 
supposed to drive the improvements of the performance 
compared to the contributing MMEs. It is pointed out that 
APCC/CliPAS and ENSEMBLES MMEs may add diver-
sity to each other both in terms of model formulation/
parameterization and in terms of initialisation. Remarka-
bly, it is noted that European models tend to use ECMWF 
reanalyses to start the hindcasts, whereas Asian-Pacific 
models use NCEP reanalyses in most cases. It is out of 
the scope of this paper to evaluate the diversity of the 
SPSs in APCC/CliPAS with respect to ENSEMBLES 
in their full complexity. Future works will be needed to 
identify what sort of diversity can contribute the most 
when trying to maximize MME performance.

The Euro-Mediterranean is one of the regions where 
the Grand MME improves significantly the probabilistic 
performance of temperature forecasts, so it is particularly 
meaningful to consider the application to the prediction 
of energy demand over Italy (as provided by Italian TSO, 
TERNA SpA) that is particularly sensitive to temperatures 
in summer. Indeed, the better combinations from the Grand 
MME produce a significant enhancement in the potential 
Economic Value (PEV) of the MME forecasts. The predic-
tion of above (below) upper (lower) tercile energy demand 
for June–July improves by 15 and 36% (10 and 25%) 
with respect to the maximum PEV attainable from either 
ENSEMBLES or APCC/CliPAS, respectively. This dem-
onstrates the potential of the Grand MME to contribute in 
obtaining useful predictions of electricity load at the sea-
sonal time scale.

The results of the present study indicate that exploit-
ing together the MMEs independently developed by the 
different communities is the way forward to optimize per-
formance of seasonal climate predictions and to maximize 
the benefit for the end-users. It is recommended that the 
real-time multi-model ensembles that has been established 
as part of the operational seasonal forecast suites by the 
European (EUROSIP), the Asian-Pacific (APCC) and the 
North American (NMME) communities will be exploited 
together in the future to go beyond current limitations and 

Fig. 13  Potential economic value (PEV) of the grand ENSEMBLES-
APCC/CliPAS (blue), ENSEMBLES (green) and APCC/CliPAS 
(red) forecasts for the prediction of June–July electricity load over 
Italy being (lower) below the lower tercile and (upper) above the 
upper tercile of the sample climatology (a) as a function of the C/L 
ratio and (b) averaged over the 0–0.3 C/L range
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pursue increasingly useful climate predictions at the sea-
sonal time-scale.
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